Login
Existing Account

Please login first to complete purchase/ quotation request, view custom order reports, or create favorites list.

Customer ID:
Password:
Stay Logged In


Forgot your Customer ID or Password?
New Account

Don't have an account with us yet? Please set up an account to place order or obtain customer services.

Peptides  >  Phytochelatins  >>  Phytochelatin 2, PC2

Product Name Phytochelatin 2, PC2
(γE - C)2 - G
Size 1 mg
Catalog # 60791
US$ $127
Purity % Peak Area By HPLC ≥ 95%
Description

A glutathione-derived heavy metal-detoxifying peptide of higher plants consisting of 2 units of γGlu-Cys.

Detailed Information Datasheet
Material Safety Data Sheets (MSDS)
Storage -20°C
References Grill, E. et al. Science 230, 674 (1985); Rauser, WE. Plant Physiol. 109, 1141 (1995).
Molecular Weight 540.6
Sequence
(One-Letter Code)
(γE-C)2-G
Sequence
(Three-Letter Code)
H - γ - Glu - Cys - γ - Glu - Cys - Gly - OH
Product Citations Dresler, S. et al. (2014). Effect of cadmium on selected physiological and morphological parameters in metallicolous and non-metallicolous populations of Echium vulgare. Ecotoxicol Environ Safety 104, 332. doi: 10.1016/j.ecoenv.2014.03.019.
Fischer, S. et al. (2014). Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification. Environ Sci Technol 48, 7552. doi: 10.1021/es405234p.
Ke, C-Y. et al. (2014). Understanding of thiol-induced etching of luminescent gold nanoclusters. RSC Adv 4, 26050. doi: 10.1039/C4RA02111H.
Song, W-Y. et al. (2014). Phytochelatin–metal (loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ 37, 1192.
Spisso, AA. et al. (2014). Characterization of Hg-phytochelatins complexes in vines (Vitis vinifera cv Malbec) as defense mechanism against metal stress. BioMetals 27, 591.
Zhang, W. et al. (2014). NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris. Mol BioSyst 10, 149. doi: 10.1039/C3MB70425D.
Abboud, P. and KJ. Wilkinson. (2013). Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii. Environ Pollution 179, 33. doi:10.1016/j.envpol.2013.03.047
Gupton‐Campolongo, T. et al. (2013). Characterization of a high affinity phytochelatin synthase from the Cd‐utilizing marine diatom Thalassiosira pseudonana. J Phycol 49, 32. doi: 10.1111/jpy.12022.
Matsuura, H. et al. (2013). Development of surface‐engineered yeast cells displaying phytochelatin synthase and their application to cadmium biosensors by the combined use of pyrene‐excimer fluorescence. Biotechnol Progress 29, 1197. doi: 10.1002/btpr.1789.
Miszczak, A. et al. (2013). SEC ICP MS and CZE ICP MS investigation of medium and high molecular weight complexes formed by cadmium ions with phytochelatins. Anal Bioanal Chem 405, 4667. doi: 10.1007/s00216-013-6868-3.
Rigouin, C. et al. (2013). Characterization of the phytochelatin synthase from the human parasitic nematode Ancylostoma ceylanicum. Mol Biochem Parasitol 191, 1. doi: 10.1016/j.molbiopara.2013.07.003.
Rigouin, C. et al. (2013). Towards an understanding of the function of the phytochelatin synthase of Schistosoma mansoni. PLoS Neglected Tropical Dis 7, e2037. doi: 10.1371/journal.pntd.0002037.
Akhter, MF. et al. (2012). Reduced translocation of cadmium from roots is associated with increased production of phytochelatins and their precursors. J Plant Physiol 169, 1821. doi: 10.1016/j.plaphy.2011.10.007.
Fernández, R. et al. (2012). Lead accumulation and synthesis of non-protein thiolic peptides in selected clones of Melilotus alba and Melilotus officinalis. Environ Exp Botany 78, 18. doi: 10.1016/j.envexpbot.2011.12.016.
Huang, J. et al. (2012). Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol 158, 1779.
Lavoie, M. et al. (2012). The influence of pH on algal cell membrane permeability and its implications for the uptake of lipophilic metal complexes. J Phycol 48, 293. doi: 10.1111/j.1529-8817.2012.01126.x
Mellado, M. et al. (2012). Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa(Chlorophyta). Plant Physiol Biochem 51, 102. doi: 10.1016/j.plaphy.2011.10.007.
Santini, O., et al. (2012). Phytochelatins in the freshwater bivalve Anodonta cygnea." Effects of copper on calcium metabolism and detoxification mechanisms in freshwater bivalve species of Anodonta: 108.
Shen, C-C. et al. (2012). Selective extraction of thiol-containing peptides in seawater using Tween 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence. J Chromatogr A 1220, 162. doi: 10.1016/j.chroma.2011.11.057.
Wu, Y. and W-X. Wang. (2012). Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure. J Haz Mat 217, 271. doi: 10.1016/j.jhazmat.2012.03.024.
Carrasco-Gil, S. et al. (2011). Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34 778. doi: 10.1111/j.1365-3040.2011.02281.x.
England, R. and KJ. Wilkinson. (2011). Determination of phytochelatins in algal samples using LC-MS. Int J Environ Anal Chem 91, 185. doi: 10.1080/03067319.2010.491913.
Heikal, L. et al. (2011). S-nitrosophytochelatins: investigation of the bioactivity of an oligopeptide nitric oxide delivery system. Biomacromol 12 2103. doi: 10.1021/bm200159h.
Ju, XH. et al. (2011). Determination and characterization of cysteine, glutathione and phytochelatins (PC 2–6) in Lolium perenne L. exposed to Cd stress under ambient and elevated carbon dioxide using HPLC with fluorescence detection. J Chrom B 879, 1717. doi: 10.1016/j.jchromb.2011.04.016.
Zeng, X-W. et al. (2011). Effects of Zn on plant tolerance and non-protein thiol accumulation in Zn hyperaccumulator Arabis paniculata Franch. Environ Exp Botany 70, 227. doi: 10.1016/j.envexpbot.2010.09.009.
Elviri, L. et al. (2010). Identification of in vivo nitrosylated phytochelatins in Arabidopsis thaliana cells by liquid chromatography-direct electrospray-linear ion trap-mass spectrometry. J Chromatog 1217, 4120.
Liedschulte, V. et al. (2010). Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnol J 8 807. doi: 10.1111/j.1467-7652.2010.00510.x.
Andrade, SAL et al. (2010). Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Botany 68, 198. doi: 10.1016/j.envexpbot.2009.11.009.
Li, Y. et al. (2010). Controlled Nitric Oxide Delivery Platform Based on S-Nitrosothiol Conjugated Interpolymer Complexes for Diabetic Wound Healing. Mol Pharmaceutics 7, 254.
Mendoza-Cózatl, DG. et al. (2010). Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance. J Biol Chem 285, 40416. doi: 10.1074/jbc.M110.155408.
Li, Y. and PI. Lee. (2010). Controlled nitric oxide delivery platform based on S-nitrosothiol conjugated interpolymer complexes for diabetic wound healing. Mol Pharmaceut 7, 254. doi: 10.1021/mp900237f.
Andra, SS. et al. (2009). Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ. Pollut. 157, 2173.
Simmons, DBD. et al. (2009). Identification and quantification of glutathione and phytochelatins from Chlorella vulgaris by RP-HPLC ESI-MS/MS and oxygen-free extraction. Anal Bioanal Chem 395, 809.
Wang, M-J. and W-X. Wang. (2009). Cadmium in three marine phytoplankton: accumulation, subcellular fate and thiol induction. Aquatic Toxicol 95, 99. doi: 10.1016/j.aquatox.2009.08.006.
Heikal, L. et al. (2008). Characterisation of the decomposition behaviour of S-nitrosoglutathione and a new class of analogues: S-Nitrosophytochelatins. Nitric Oxide 20, 157.
Kang, SH. et al. (2008). Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angewandte Chem Int Ed 47, 5186. doi: 10.1002/anie.200705806.
Mendoza-Cózatl, DG. et al. (2008). Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54, 249.
Minocha, R. et al. (2008). Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography. J. Chromatogr. A 1207, 72.
Zeng, X. et al. (2008). Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ. Exp. Botany 66, 242.
Miao, AJ. & WX. Wang (2007). Predicting copper toxicity with its intracellular or subcellular concentration and the thiol synthesis in a marine diatom. Environ. Sci. Technol. 41, 1777.
Thangavel, P. et al. (2007). Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell. Tiss. Organ Cult 88, 201.
     
  < Back