

Product Data Sheet

Product Name: Anti-Caspase-3a (p12) (CT), Z-FishTM

(Caspase 3, apoptosis-related cysteine protease a)

Catalog Number: 55372

Lot Number: See label on vial

Product Description: This rabbit polyclonal antibody is supplied as an epitope-affinity purified

rabbit IgG in 250 µl of 40 mM MOPS buffer (pH 7.5) containing 0.1%

BSA, 50% glycerol, and 0.05% NaN₃.

Immunogen: A synthetic peptide derived from the C-terminal region of zebrafish

Caspase-3a (GenBank accession# NP_571952).

Species Reactivity: The species reactivity is exclusively to zebrafish. The antibody reactivity

was validated by ELISA. The specificity was confirmed by Western blot

analysis of zebrafish lysate.

Application Notes: The following concentration ranges are recommended starting points for

this product. The investigator should determine the optimal working

concentrations for specific applications.

ELISA for immunizing peptide: 1: 5,000-20,000 Western Blot: 1: 500-1,000

Western blot analysis of Caspase-3a in zebrafish embryonic lysate (24 hpf) with the anti-zebrafish Caspase-3a (p12) (CT) (Cat# 55372). A major immunoreactive band at ~32 kDa was detected.

Western blotting of 3 dpf wild type zebrafish embryos (5/lane) +/- gamma radiation. Embryos were either untreated or subject to 25Gy gamma radiation. 6 hours after exposure to gamma radiation embryos were lysed in TritonX-100 lysis buffer with protease inhibitors. The Caspase-3a was probed with the anticaspase-3a (p12) (cat# 55372). (Image courtesy of Dr. Alyson W. MacInnes from Hubrecht Institute of Developmental Biology and Stem Cell Research, Netherlands)

Background:

Caspase-3 is ubiquitously expressed, and like other caspases, is synthesized as an inactive proenzyme. Upon activation, Caspase-3 is cleaved at Asp28-Ser29 and Asp175-Ser176, thereby generating two subunits of 17 kDa (p17) and 12 kDa (p12), respectively (1). Recent studies have implicated that Caspase-3 is associated with the induction of apoptosis. Activation of Caspase-3 occurs in response to variety of apoptotic inducers, including Fas mediated apoptosis (2-4). In zebrafish model, the apoptosis process was also companied by the activation of caspase-3, evidenced by the high levels of activated caspase-3 throughout the cells of the blastodisc and in the cytoplasm of the volk cell detected by immunohistochemistry (5).

References:

- Nicholson, D. W., et al. (1995) Nature. 376, 37-43.
- Schlegel, J., et al. (1996) J. Biol. Chem. 271, 1841-1844.
- 3. Slee, E. A., et al. (1996) Biochem. J. 315, 21-24.
- 4. Jacobson, M. Det al. (1996) J. Cell Biol. 133, 1041-1051.
- 5. Eimon, P.M., et al. (2006) Cell Death Differ. 13(10): 1619-1630

Storage:

Store at -20 °C for up to 24 months upon receiving the product.

Related Products:

Anti-Caspase-3a (p12) (CT) blocking peptide, Z-Fish[™], Cat. #55372P Anti-Caspase-3a (p12) (C1) blocking peptide. Anti-Caspase-2 (NT), Z-FishTM, Cat. # 55367 Anti-Caspase-2 (IN), Z-FishTM, Cat. # 55369 Anti-Caspase-b (IN), Z-FishTM, Cat. # 55370

Anti-Caspase-3a (p17) (NT) Z-FishTM, Cat. # 55371 Anti-Caspase-3b (p17) (NT), Z-FishTM, Cat. # 55373 Anti-Caspase-3b (p12) (CT), Z-FishTM Cat. # 55374 Anti-Caspase-8 (IN), Z-FishTM Cat. # 55375

Anti-Caspase-8l2 (IN), Z-FishTM Cat. # 55376

Anti-Caspase-9 (p37) (IN-1), Z-Fish[™] Cat. # 55377 Anti-Caspase-9 (p37) (IN-2), Z-Fish[™] Cat. # 55378 Anti-Caspase-9 (p10) (IN-3), Z-Fish[™] Cat. # 55379

Compatible Secondary Antibodies:

Catalog #	Goat anti-Rabbit IgG (H+L)
28176	Unconjugated
28176-AMCA	AMCA Labeled
28176-FAM	FAM Labeled
28176-FITC	FITC Labeled
28176-TAMRA	TAMRA Labeled
28176-H488	HiLyte Fluor [™] 488 Labeled
28176-H555	HiLyte Fluor [™] 555 Labeled
28176-H594	HiLyte Fluor [™] 594 Labeled
28176-H647	HiLyte Fluor [™] 647 Labeled
28176-H680	HiLyte Fluor [™] 680 Labeled
28176-H750	HiLyte Fluor [™] 750 Labeled
61056-H488	Highly Cross-adsorbed, HiLyte Fluor [™] 488 Labeled
61056-H555	Highly Cross-adsorbed, HiLyte Fluor [™] 555 Labeled
61056-H594	Highly Cross-adsorbed, HiLyte Fluor [™] 594 Labeled
61056-H647	Highly Cross-adsorbed, HiLyte Fluor [™] 647 Labeled
61056-H680	Highly Cross-adsorbed, HiLyte Fluor [™] 680 Labeled
61056-H750	Highly Cross-adsorbed, HiLyte Fluor [™] 750 Labeled
28177	Highly Cross-adsorbed, HRP Labeled
28178	Highly Cross-adsorbed, AP Labeled
28179	Highly Cross-adsorbed, Biotin Labeled

Protocols:

Western blot

- Run SDS-PAGE gel, and then Western transfer the protein samples to nitrocellulose (NC) or PVDF (need to pre-activate by soaking the membrane in 100% methanol for 10 minutes) membrane for immunoblot analysis. Use pre-stained molecular markers to indicate the size and transferring efficiency.
 - For those antibodies with a low expression level, load as much as possible of the samples on the SDS-PAGE gel.
 - Try to do the transfer for an extended period at low temperature (for example, 25V, overnight at 4 °C) to get the best transferring result.
- 2. Block the membrane with blocking buffer (made with 5% non-fat milk in 1x TBST) for 60 minutes at room temperature.
- Dilute the primary antibody with blocking buffer according to the suggested dilution factor on datasheet.
- Remove the blocking buffer and add enough diluted primary antibody to cover the membrane.
- 5. Incubate the membrane with primary antibody for 1hr at R/T with rocking. You can also do overnight incubation at 4 °C, but make sure you cover the western-blot tray to prevent excessive evaporation.
 - Overnight incubation at 4 °C is recommended to obtain better signal/background ratio.
- 6. Briefly wash the membrane with 1xTBST once to remove any excessive primary antibody.
- 7. Wash the membrane with 1xTBST 3 times for 5, 5, and 15 minutes.
 - If the background is high, wash with high salt TBST (0.5 M NaCl in 1x TBST) instead of regular 1xTBST.
- 8. In this antibody characterization, we used goat anti-rabbit IgG conjugated with Hilyte FluorTM 750 (cat#61056-H750) with dilution 1:20,000. If other secondary antibody (for example, HRP-conjugated secondary antibody) is used, dilute with blocking buffer accordingly.
- 9. Incubate the membrane with secondary antibody for 60 minutes at R/T.
- Wash the membrane with 1xTBST briefly, and then 4 times (5 min/5 min/15 min/15 min/15 min).
 To get better results in the high background cases, wash with high salt TBST (0.5 M NaCl in 1x TBST).
- 11. If HRP-conjugated secondary antibody is used, prepare the chemiluminescence development substrate mixture by mixing equal amount of solutions 1 and 2.
- 12. Image development.

Zebrafish Embryo Whole-Mount IHC

PROCEDURE

- 1. Fixation & storage of embryos
- 1.1 Removal of chorions for embyos older than 18 somites (older than 18 hpf).
 - **a.** Collect 200~300 (up to 500) staged zebrafish embryos into a 3.5 cm Petri dish, remove all the culture media.
 - **b.** Add 1 ml of pronase (2 mg/ml), gently shake and incubate at 37 $^{\circ}$ C for 15 $^{\sim}$ 20 min (or until all the embryo shells are broken). Frequently check the embryos during the incubation to monitor the break of the egg shells.

- **c.** Remove all the pronase and the broken shells with a pipette, rinse the dechorionated embryos 3x5 min (three times at five minutes each) with E2 buffer.
- 1.2 Transfer all the embryos into a 5 ml capped glass vial. Put the vial on ice until all are unconscious and settled on the bottom of the vial. Remove the entire E2 buffer.
 - For PFA fixation: re-suspend the embryos with ice-cold 4% PFA;
 - For Dent's fixation: suspend the embryos with -20 °C Dent's fixative (80% Methanol, 20% DMSO);
 - For TCA fixation: suspend the embryos with ice-cold 10% TCA.
 Incubate overnight at 4°C.
- 1.3 Remove fixatives. Rinse the embryos with PBSTx 3x10 minutes. These embryos can be used immediately for antibody staining.
- 1.4 For embryo storage, remove the buffer and add 100% ice-cold methanol. Store at -20°C up to several months.
- 2. Antibody staining (Day 1)
- 2.1 Rehydration. Transfer determined amount of embryos into a 5 ml glass vial. Remove the methanol and rehydrate them by successive incubations in the following solutions (25°C, 1 ml/well):

75% MeOH/25% PBS for 5 min (no agitation)

50% MeOH/50% PBS for 5 min (no agitation)

25% MeOH/75% PBS for 5 min (no agitation)

100% PBSTx for 5 min (with rocking agitation)

- 2.2 Blocking. Re-suspend the embryos with 1 ml of blocking buffer 1 and incubate for 3-4 hours at room temperature (or 4 °C overnight) with rocking agitation.
- 2.3 Primary antibody staining. Transfer the desired number of embryos (5~6) into each well of a 24-well plate(s). Add 0.5 ml of blocking buffer 2 to each well. Add calculated amount of primary antibodies into the wells.
- 2.4 Incubate the plate(s) overnight at 4 °C with rocking agitation.
- 3. Antibody staining (Day 2)
- 3.1 Wash at room temperature with rocking agitation:
 - a. PBSTx, very brief wash
 - b. PBSTx for 3x5 min
 - c. PBSTx for 3x20 min
- 3.2 Add diluted (1:5000 in blocking buffer 2) secondary antibody into each well. Incubate at room temperature for 2 hours (or overnight at 4 °C) in the dark with rocking agitation.
- 3.3 Wash with PBSTx 3x5 minutes, then 3x20 min at room temperature.
- 4. Mounting
- 4.1 Relocate the embryos from each well onto a slide(s). Remove the liquid from the slides with a tip of filtering paper.
- 4.2 Put a drop of anti-fade reagent onto each sample cluster. Keep the slides even in the dark overnight at room temperature.
- 5 Reading & Imaging.

REGENTS AND BUFFERS NOT PROVIDED

- E2 buffer: NaCl 15.0 mM, KCl 0.5 mM, MgSO₄ 1.0 mM, KH₂PO₄ 0.15 mM, Na₂HPO₄ 0.05 mM, CaCl₂ 1.0 mM, NaHCO₃ 0.7 mM. Store at 4°C.
- 2. Pronase: 2 mg/ml in E2 buffer, store at -20 °C.
- 3. Paraformaldehyde (PFA) (or Formaldehyde (FA)) 4% in PBS. Store at room temperature.
- 4. PBSTx: PBS with 0.5% Triton X-100. Store at 4°C.
- 5. Blocking buffer 1: 0.5% BSA, 5% normal goat serum (NGS), 0.1% DMSO, 0.03% NaN₃ in PBSTx. Store 4°C.
- Blocking buffer 2: 0.5% BSA, 0.1% DMSO, 0.03% NaN₃ in PBSTx. Store 4°C.

This product is for *in vitro* research use only.