Product Data Sheet Product Name: Anti-Tp53 (IN), Z-FishTM Catalog Number: 55915 Lot Number: See label on vial Product Description: This rabbit polyclonal antibody is supplied as an epitope-affinity purified rabbit IgG in 250 μl of 40 mM MOPS buffer (pH 7.5) containing 0.1% BSA, 0.05% NaN₃, and 50% glycerol. Immunogen: A synthetic peptide derived from the intermediate region (IN) of the zebrafish Tp53 (GenBank accession# NP_571402). Species Reactivity: The species reactivity is exclusively to zebrafish. The antibody reactivity was validated by ELISA. The specificity was confirmed by Western blot analysis in zebrafish lysate. Application Notes: The following concentration ranges are recommended starting points for this product. The investigator should determine the optimal working concentrations for specific applications. ELISA for immunizing peptide: 1: 5,000-20,000 Western blot: 1: 500-1,000 IP: 1: 200-500 Tissue lysate SDS-PAGE analysis of the immunoprecipitated zebrafish Tp53 recombinant proteins. Lanes 1 and 2, anti-Tp53 (cat#55925); Lanes 3 and 4, anti-Tp53 (CT) (cat#55342); Lanes 5 and 6, anti-Tp53 (IN) (cat#55915); Lanes 7 and 8, negative control; Lane 9, rTp53 protein (positive control). # Background: The p53 tumor suppressor protein regulates cell cycle progression and cell survival in response to DNA damage and certain other cellular stresses by arresting cell cycle progression or by inducing apoptosis (1, 2). One of the most important mammalian cell cycle checkpoint proteins is the tumor suppressor p53. In normal, undamaged cells, p53 is rapidly degraded. Treating cells with a variety of DNA damage-inducing agents induces a transient accumulation of p53 protein and activates it as a transcription factor. It is frequently lost or mutated in multiple types of human cancer (3, 4). Zebrafish is becoming the vertebrate system of choice for studying p53 family role in development (5, 6). ### References: - 1. Levine AJ (1997) Cell 88:323-331 - 2. Prives C et al (1999) J Pathol. 187:122-126 - 3. Brown JM et al (1999) Cancer Res. 59:1391-1399 - 4. Albrechtsen N et al (1999) Oncogene 18:7706-7717 - 5. Danilova N, et al (2008) Birth Defects Res C Embryo Today. 84(3): 215-27. - **6.** Manfredi JJ (2009) Genes Dev. (2009) 23(3): 278-90. Storage: Store -20 °C for up to 24 months upon receiving the product. Related Products: Anti-Tp53 (IN) blocking peptide, Z-FishTM, cat# 55915P Anti-zebrafish Akt-3 (CT), catalog No.: 55343 Anti-Bcl-xL (IN), Z-Fish[™], Catalog No. 55426 Anti-Bcl2 (NT), Z-Fish[™], Catalog No. 55396 Anti-Cyclin D1 (CT), Z-FishTM, Catalog No. 55400 Anti-Cyclin D1 (NT), Z-FishTM, Catalog No. 55399 Anti-PCNA (NT), Z-FishTM, Catalog No. 55420 Anti-PCNA (IN), Z-FishTM, Catalog No. 55421 Anti-Chk2 (CT), Z-FishTM, Catalog No. 55435 Anti-p27 Kip1 (IN-1), Z-FishTM, Catalog No. 55434 # Compatible Secondary Antibodies: | Catalog # | Goat anti-Rabbit IgG (H+L) | |-------------|--| | 28176 | Unconjugated | | 28176-AMCA | AMCA Labeled | | 28176-FAM | FAM Labeled | | 28176-FITC | FITC Labeled | | 28176-TAMRA | TAMRA Labeled | | 28176-H488 | HiLyte Fluor [™] 488 Labeled | | 28176-H555 | HiLyte Fluor [™] 555 Labeled | | 28176-H594 | HiLyte Fluor [™] 594 Labeled | | 28176-H647 | HiLyte Fluor [™] 647 Labeled | | 28176-H680 | HiLyte Fluor [™] 680 Labeled | | 28176-H750 | HiLyte Fluor [™] 750 Labeled | | 61056-H488 | Highly Cross-adsorbed, HiLyte Fluor [™] 488 Labeled | | 61056-H555 | Highly Cross-adsorbed, HiLyte Fluor [™] 555 Labeled | | 61056-H594 | Highly Cross-adsorbed, HiLyte Fluor [™] 594 Labeled | | 61056-H647 | Highly Cross-adsorbed, HiLyte Fluor [™] 647 Labeled | | 61056-H680 | Highly Cross-adsorbed, HiLyte Fluor [™] 680 Labeled | | 61056-H750 | Highly Cross-adsorbed, HiLyte Fluor [™] 750 Labeled | | 28177 | Highly Cross-adsorbed, HRP Labeled | | 28178 | Highly Cross-adsorbed, AP Labeled | | 28179 | Highly Cross-adsorbed, Biotin Labeled | This product is for *in vitro* research use only. #### Protocols: #### Western blot - Run SDS-PAGE gel, and then Western transfer the protein samples to nitrocellulose (NC) or PVDF (need to pre-activate by soaking the membrane in 100% methanol for 10 minutes) membrane for immunoblot analysis. Use pre-stained molecular markers to indicate the size and transferring efficiency. - For those antibodies with a low expression level, load as much as possible of the samples on the SDS-PAGE gel. - Try to do the transfer for an extended period at low temperature (for example, 25V, overnight at 4 °C) to get the best transferring result. - 2. Block the membrane with blocking buffer (made with 5% non-fat milk in 1x TBST) for 60 minutes at room temperature. - Dilute the primary antibody with blocking buffer according to the suggested dilution factor on datasheet. - Remove the blocking buffer and add enough diluted primary antibody to cover the membrane. - 5. Incubate the membrane with primary antibody for 1hr at R/T with rocking. You can also do overnight incubation at 4 °C, but make sure you cover the western-blot tray to prevent excessive evaporation. - Overnight incubation at 4 °C is recommended to obtain better signal/background ratio. - 6. Briefly wash the membrane with 1xTBST once to remove any excessive primary antibody. - 7. Wash the membrane with 1xTBST 3 times for 5, 5, and 15 minutes. - If the background is high, wash with high salt TBST (0.5 M NaCl in 1x TBST) instead of regular 1xTBST. - 8. In this antibody characterization, we used goat anti-rabbit IgG conjugated with Hilyte FluorTM 750 (cat#61056-H750) with dilution 1:20,000. If other secondary antibody (for example, HRP-conjugated secondary antibody) is used, dilute with blocking buffer accordingly. - 9. Incubate the membrane with secondary antibody for 60 minutes at R/T. - Wash the membrane with 1xTBST briefly, and then 4 times (5 min/5 min/15 min/15 min/15 min). To get better results in the high background cases, wash with high salt TBST (0.5 M NaCl in 1x TBST). - 11. If HRP-conjugated secondary antibody is used, prepare the chemiluminescence development substrate mixture by mixing equal amount of solutions 1 and 2. - 12. Image development. # Zebrafish Embryo Whole-Mount IHC # **PROCEDURE** - 1. Fixation & storage of embryos - 1.1 Removal of chorions for embyos older than 18 somites (older than 18 hpf). - **a.** Collect 200~300 (up to 500) staged zebrafish embryos into a 3.5 cm Petri dish, remove all the culture media. - **b.** Add 1 ml of pronase (2 mg/ml), gently shake and incubate at 37 $^{\circ}$ C for 15 $^{\sim}$ 20 min (or until all the embryo shells are broken). Frequently check the embryos during the incubation to monitor the break of the egg shells. - **c.** Remove all the pronase and the broken shells with a pipette, rinse the dechorionated embryos 3x5 min (three times at five minutes each) with E2 buffer. - 1.2 Transfer all the embryos into a 5 ml capped glass vial. Put the vial on ice until all are unconscious and settled on the bottom of the vial. Remove the entire E2 buffer. - For PFA fixation: re-suspend the embryos with ice-cold 4% PFA; - For Dent's fixation: suspend the embryos with -20 °C Dent's fixative (80% Methanol, 20% DMSO); - For TCA fixation: suspend the embryos with ice-cold 10% TCA. Incubate overnight at 4°C. - 1.3 Remove fixatives. Rinse the embryos with PBSTx 3x10 minutes. These embryos can be used immediately for antibody staining. - 1.4 For embryo storage, remove the buffer and add 100% ice-cold methanol. Store at -20°C up to several months. - 2. Antibody staining (Day 1) - 2.1 Rehydration. Transfer determined amount of embryos into a 5 ml glass vial. Remove the methanol and rehydrate them by successive incubations in the following solutions (25°C, 1 ml/well): 75% MeOH/25% PBS for 5 min (no agitation) 50% MeOH/50% PBS for 5 min (no agitation) 25% MeOH/75% PBS for 5 min (no agitation) 100% PBSTx for 5 min (with rocking agitation) - 2.2 Blocking. Re-suspend the embryos with 1 ml of blocking buffer 1 and incubate for 3-4 hours at room temperature (or 4 °C overnight) with rocking agitation. - 2.3 Primary antibody staining. Transfer the desired number of embryos (5~6) into each well of a 24-well plate(s). Add 0.5 ml of blocking buffer 2 to each well. Add calculated amount of primary antibodies into the wells. - 2.4 Incubate the plate(s) overnight at 4 °C with rocking agitation. - 3. Antibody staining (Day 2) - 3.1 Wash at room temperature with rocking agitation: - a. PBSTx, very brief wash - b. PBSTx for 3x5 min - c. PBSTx for 3x20 min - 3.2 Add diluted (1:5000 in blocking buffer 2) secondary antibody into each well. Incubate at room temperature for 2 hours (or overnight at 4 °C) in the dark with rocking agitation. - 3.3 Wash with PBSTx 3x5 minutes, then 3x20 min at room temperature. - 4. Mounting - 4.1 Relocate the embryos from each well onto a slide(s). Remove the liquid from the slides with a tip of filtering paper. - 4.2 Put a drop of anti-fade reagent onto each sample cluster. Keep the slides even in the dark overnight at room temperature. - 5 Reading & Imaging. # **REGENTS AND BUFFERS NOT PROVIDED** - E2 buffer: NaCl 15.0 mM, KCl 0.5 mM, MgSO₄ 1.0 mM, KH₂PO₄ 0.15 mM, Na₂HPO₄ 0.05 mM, CaCl₂ 1.0 mM, NaHCO₃ 0.7 mM. Store at 4°C. - 2. Pronase: 2 mg/ml in E2 buffer, store at -20 °C. - 3. Paraformaldehyde (PFA) (or Formaldehyde (FA)) 4% in PBS. Store at room temperature. - 4. PBSTx: PBS with 0.5% Triton X-100. Store at 4°C. - 5. Blocking buffer 1: 0.5% BSA, 5% normal goat serum (NGS), 0.1% DMSO, 0.03% NaN₃ in PBSTx. Store 4°C. - 6. Blocking buffer 2: 0.5% BSA, 0.1% DMSO, 0.03% NaN₃ in PBSTx. Store 4°C.