

Highly Sensitive FRET Substrate for Assay of HCV Protease

Xiaohe Tong, Ling Sheng, Xiaofen Zhong, Yi Tang, Junge Lu, Zhenjun Diwu and Anita Hong AnaSpec Inc., 2149 O'Toole Ave., San Jose, CA 95131, USA

Introduction

The alarming spread of hepatitis C viral (HCV) infections and the consequences associated with chronic hepatitis C have resulted in a world-wide medical problem affecting 170 million patients [1]. The inhibition of HCV protease activity serves as an important method for preventing HCV infection caused by mutiplication of the HCV virus. Although a fluorescence resonance energy transfer (FRET) depsipeptide, Ac-DED(Edans)EE-achbuy[COO]ASK(Dabey])-NH₂ (substrate I) is widely used for detecting HCV NS3/4A serine protease activity [2], its low sensitivity and short detection wavelength limit its use for high throughput screening.

We have recently developed a sensitive FRET HCV protease substrate for high throughput screening of HCV protease inhibitors. This new FRET substrate, Ac-DE-Dap(QXL^{M5}20)EE-aAbuv[COO]AS-C(5-FAMsp⁻)-NH (substrate II), incorporates 5-FAM (donor) and QXL^{M5}20 (quencher). QXL^{M5}20 is proven to be the most effective quencher for fluoreseins such as FAM and FITC. In comparison to substrate I, this new FRET peptide offers several advantages.

Results

Substrate II was synthesized by a combination of Fmoc solid phase and solution phase synthesis methods. The resin used was Rink amide MBHA resin. All couplings, including Dap(Mtt), were performed with fourfold excess of activated amino acids over the resin-free amino groups, using the ratio of Fmoc-amino acid:HBTU:HOBt:DIEA (1:1:1:2). L-(+)-lactic acid was activated using DIC:HOBt (1:1). Esterification of Abu to the free hydroxyl of lactic acid was performed using the Fmoc-Abu-F in the presence of a catalytic amount of DMAP. At the end of the assembly, the peptide-resin was treated with 1% TFA and 3% TIPS in DCM to remove the Mtt group. QXLTM520-OH was coupled to β-amino group of Dap with DIC:HOBt. Complete deprotection of the peptide was performed with TFA:water:TIPS (93:4:3) for 2 h to obtain crude Ac-DE-Dap(QXLTM520)EE-aAbuw[COO]ASC-NH, (III). Peptide III was incubated with 5-FAMsp to obtain crude substrate II. The crude peptide was purified by RP-HPLC using as eluents (A) 50 mM ammonium acetate (pH 6.5), and (B) acetonitrile.

Substrate II peptide was derived from the sequence of the NS4A/ NS4B cleavage site (DEMEECASHL). In comparison with the sequence of substrate I peptide, Ac-Asp-Giu-AsptEdans)-Glu-Glua/bauy(COO) Ala-Ser-Lys(Dabcyl)-NH2, we have changed the AsptEdans) to Dap-(QXL^{TM2}SQ) and Lys(Dabcyl) to Cys(S-FAMsp). Compared to Edams, the extinction coefficient of 5-FAM is 13-fold higher and its fluorescence of drug candidates. Additionally, 5-FAM is much brighter and less sensitive to the environment than Edams. These characteristics of 5-FAM prompted us to design a more sensitive 5-FAM FRET peptide substrate for HCV NS3/AA protease. We developed the QXL^{MS2}D0 serve as a quencher for the 5-FAM. Its absorption spectrum perfectly overlaps with the emission spectrum of 5-FAM (Figure 1). Additionally, QXL^{MS2}D0 is a hydrophilic compound unlike Dabeyl which is hydrophobic. This property of QXL^{MS2}D0 increases the solubility of the peptide substrate. The problem caused by the hydrophobic nature of many fluorescent donors and quenchers is thus alleviated.

Figure 1. The absorption spectrum of QXL^{TM520} perfectly overlaps with the emission spectrum of 5-FAM. QXL^{TM520} is an excellent quencher when paired with 5-FAM.

In the intact substrate II FRET peptide, the fluorescence of 5-FAM is quenched by QXL^{MS}20 (Figure 2). Upon cleavage, the fluorescence of 5-FAM is recovered and can be continuously monitored at Excitation/ Emission = 490 nm/520 nm over time (Figure 3).

Figure 2. The scheme of the proteolytic cleavage of substrate II peptide by HCV NS3/4A protease.

Figure 3. The fluorescence intensity of 5-FAM increased with reaction time when the 5-FAM/QXLTM520 FRET peptides were cleaved by HCV NS3/4A protease.

The substrate II peptide showed significantly less inner filter effect than substrate I peptide. The new 5-FAM/QXL 520-based substrate II has inner filter effect < 5% when the peptide concentration is <50 μ M. The fluorophore is absorbed by nearby quencher on intact substrates or cleaved products, so that only a fraction of its fluorescent signal can be detected by a fluorometer. As shown in Figure 4, when the substrate I peptide concentration reaches 20 μ M, 50% of Edans's fluorescence is quenched. The inner filter effect significantly reduces the accuracy of erazymatic kinetic parameters (Km and Keat et al).

Figure 4. 5-FAM/QXLTM520 FRET peptide showed less inner filter effect compared to Edans/Dabcyl FRET peptide.

The enzyme detection dynamic range of 5-FAM/QXL^{™520} FRET peptide is from 8.27 to 0.064 pmole, while that of Edans/Dabcyl FRET peptide is from 8.27 to 0.32 pmole (Figure 4). These results demonstrate 5-FAM/QXL^{™520} FRET peptide is eight times more sensitive than Edans/Dabcyl FRET peptide.

Figure 4. The sensitivity comparison of 5-FAM/QXLTM520 FRET peptide and Edans/Dabcyl FRET peptide

Substrate II has smaller Km and higher Kcat/Km value compared to substrate I (Table 1). Individual kinetic parameters ($K_{and} K_{and}$) are determined over a substrate concentration range of 0-100 mM and calculated by double reciprocal plots.

Table 1. The comparison of kinetic parameters of two FRET substrates.*

	$K_m(\mu M)$	$K_{cat}(min^{-1})$	$K_{cat}/K_m(M^{-1}s^{-1})$
Substrate II	3.2	2.7	14127.3
Substrate I	69.4	16.5	3961.0

* HCV NS3/4A protease is incubated with the substrates in 50 mM Tris, pH 7.5, 30 mM DTT, 1% Chaps, 15% glycerol at room temperature.

Conclusion

- We have developed a highly sensitive FRET substrate II for HCV NS3/4A protease assay which can be applied to high throughput screening of anti -HCV NS3/4A protease drugs.
- Substrate II has stronger absorption and emission intensity at longer wavelengths (490 nm/520 nm) compared to substrate I.
- Assays using substrate II exhibit lower background due to less autofluorescent interference from cell components and test compounds.
- QXL[™]520 is more water-soluble than Dabcyl. This property increases the solubility of substrate II.
- Substrate II provides better assay sensitivity. K_m is 21-fold lower than substrate I. Substrate II is 8 times more sensitive than substrate I, and can detect < 0.1 pmol of HCV NS3/4A protease.

Reference

- 1. Wesley, A., and Alter, M.J. (2000) Semin. Liver Dis. 20, 1-16.
- 2. Taliani, M., et al., (1996) Anal. Biochem. 240, 60-67.