ANASPEC Peptides

For Life Science Research

- > Custom peptides
- > Quantified peptides
- > Heavy isotope labeled peptides
- > FRET peptides
- > Cyclic peptides
- > Peptide-oligo conjugates
- > Catalog peptides

AnaSpec, a subsidiary of Eurogentec, has a long-standing peptide expertise during which it has consistently provided reliable products and services for the global Life Science research community, and striven to meet the most stringent expectations for quality, delivery timelines, and technical support.

CUSTOM & CATALOG PEPTIDE INNOVATION

The development of diverse peptide synthesis platforms allows for the production of complex peptides.

AnaSpec catalog peptides are specially categorized for quick recognition of peptides that fit your research needs.

TRUSTED QUALITY

Ranked high by our customers for product quality, we work hard to ensure our products and services meet your expectations for identity, purity, and delivery time. Specializing in **complex** peptides such as hydrophobic peptides, or those with multiple modifications

1 mg **to gram** quantities

IS

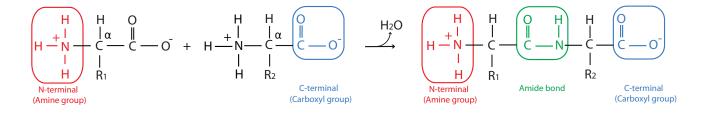
Technical **support** that can guide you all the way from quotation to delivery

ISO 9001 certified quality system

AnaSpec Peptides

Custom

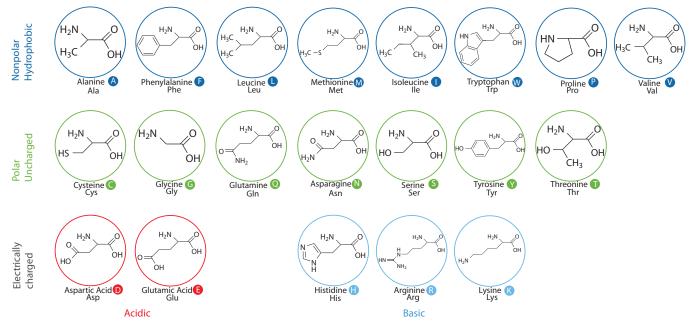
Catalog

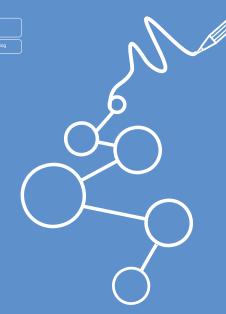

⇒	р6	Custom Peptides
≥	р6	Standard peptides
€	p10	Quant-Peptides
≥	p10	Heavy-isotope labeled peptides
≥	p11	Peptide oligonucleotide conjugates
≥	p12	Fluorescent labeled peptides
≥	p16	Labeling kits
≥	p17	Cyclic custom peptides
≥	p18	Peptide libraries
≥	p19	Catalog Peptides
≥	p20	Neuroscience
≥	p21	Cardiovascular
≥	p22	Diabetes
≥	p23	Cancer and apoptosis
≥	p24	Cell adhesion and ECM
≥	p24	Cell permeable & cell penetrating
≥	p25	Host defense
≥	p25	Epigenetics
≥	p26	Peptide hormones
€	p26	Signaling
≥	p27	Peptide analysis

Annexes			
<mark>⇒</mark> p28	Technical information and FAQs		
⇒ p29	Additionnal services and trademarks & labels		
⇒ p30	How to order		
<mark>∌</mark> p31	Related products and license statements		

ANATOMY OF A PEPTIDE

Peptides are vital to every living cell of the body and possess a variety of biochemical activities. They can function as enzyme modulators, hormones, antibiotics, and receptors. Under or over expression of certain peptides can play a role in specific disease states such as Diabetes, Cardiovascular diseases, and Alzheimer's disease. Examples of well known peptides include insulin and endorphins.


A peptide is a short polymer of amino acids linked together by peptide bonds also known as amide bonds (CO-NH bond). The peptide is formed when the carboxyl group of one amino acid reacts with the amine group of another amino acid in a dehydration reaction. The resultant peptide carries an amine group at the N-terminus and a carboxyl group at the C-terminus. AnaSpec can synthetically produce complex peptides, incorporating any of the 20 standard amino acids or other unnatural amino acids (UAADs) (glycosylated, azide containing, methylated, etc). Additionally we can engineer structural modifications, such as cyclizations.



➡ THE 20 STANDARD AMINO ACIDS

The 20 standard amino acids are "proteinogenic" meaning they are naturally genetically encoded and can be incorporated into proteins during translation. In contrast, unnatural amino acids are "non-proteinogenic" because they are not encoded genetically, or incorporated properties such as hydrophobicity, during translation. solubility, and charge. L amino acid

Each amino acid carries a unique R group that renders it with specific chemical properties. In turn, the amino acids in a peptide sequence dictate the peptide properties such as hydrophobicity, solubility, and charge. L amino acids are the natural form (designated by upper case letters), and D amino acids are the unnatural form (designated by lower case letters).

Custom peptides

Our peptide engineers are capable of optimizing your peptides by leveraging a vast degree of expertise in chemical peptide synthesis gained through our >20 years of experience, customer collaborations, and stringent quality standards. We also know that confidentiality is important to you, and will treat your project and data with the utmost care and security.

STANDARD PEPTIDES

We offer a versatile platform for the synthesis of custom peptides (simple and complex modifications), which cater to several applications including drug discovery research.

Both solid phase and liquid phase syntheses are employed. The fundamental premise of solid phase synthesis involves the incorporation of N- α -amino acids into a peptide of the desired sequence with one end of the sequence remaining attached to a

solid support matrix. While the peptide is being synthesized usually by stepwise methods, all soluble reagents can be removed from the peptide-solid support matrix by filtration and washed away at the end of each amino acid coupling step. After the desired sequence of amino acids has been obtained, the peptide is cleaved from the polymeric support. Additional liquid phase synthesis can be employed depending on the type of modification(s) requested on the peptide.

SPECIFICATIONS

Length: 2-60 amino acids.

Purity: >95%, >90%, >85%, >70%, or crude.

Tip: Purity is assessed by HPLC analysis, and indicates the % of the target peptide in the peptidic mix.

Quantity: 1mg minimum to gram

quantities (0.5mg available for specified modifications) Quantity can be delivered as gross weight or net weight. When absolute quantification is a must, we recommend our Quantpeptides (see p.10). For less stringent requirements, we offer peptide

content based on CHN analysis.

Counter-lon:

Default is TFA (Trifluoroacetic Acid) which binds to the peptide N-terminus, and to basic Lys, Arg and His residues. As TFA can be toxic to cells and animals, we also offer an acetate or chloride salt exchange for an additional fee.

QC Testing:

- Identity by Mass Spec Analysis
- % Purity by HPLC, additional testing upon request
- Water content determination
- CHN Analysis
- Inquire for other custom analysis

Documentation: Mass Spec and

HPLC chromatographs, technical data sheet.

Format: Lyophilized powder, peptide in solution on request. For special format aliquots see Dispensing Service (p. 29)

Shipping:

Ambient temperature.

Lead Time:

3-5 weeks. Highly modified peptides may require longer production times.

DID YOU KNOW?

What is the difference between Net peptide amount, Gross peptide amount, and which does a Quant-Peptide offer?

The industry standard is to deliver peptides in a lyophilized form and to state the delivery amount as the weight of the lyophilized powder "Gross weight". But beside the peptide of interest, the production mix contains other peptidic entities such as truncated peptide forms, deprotected peptides or incomplete peptide sequences. All together these peptidic molecules form the "peptide content".

The gross weight, in addition to the peptidic weight,

contains and is largely influenced by other components such as residual solvent, water and the TFA counter-ion whose molecular mass is high (114Da). Hence TFA which binds to the free N-terminus of the peptide as well as to the basic residues, significantly contributes to the **gross weight** of the lyophilized material.

Therefore when ordering 1 mg of peptide, you will receive 1 mg of powder which may contain 60-80% peptide. The **net peptide content** (NPC) is the fraction of peptidic material present in the lyophilized material. In combination with the peptide purity, it allows to determine the exact amount of the peptide of interest. NPC is traditionally measured by amino acid analysis (AAA; limited accuracy but requires a low material amount) or elemental analysis (CHN; requires milligrams of peptide but is more accurate). Both methods measure total peptidic content.

Our Quant-Peptides correspond to two proprietary peptide quantitation methods (with and without Quant-Tag), offering net peptide content with better accuracy and reproducibility than AAA or CHN. See p.10 for more information on the Quant-Peptides.

What does "H" or "OH" signify at the ends of my peptide?

These shorthand terms can be used when the peptide sequence is indicated using either the 3-letter or 1-letter amino acid code. "H" at the left end N-terminus is shorthand for NH₂ and indicates a free amine. "OH" at the right end C-terminus is shorthand for COOH, and

indicates a free carboxyl group.

RECOMMENDED

For example:

H-Lys-Ala-Glu-OH is the same as $\rm NH_2$ -Lys-Ala-Glu-COOH

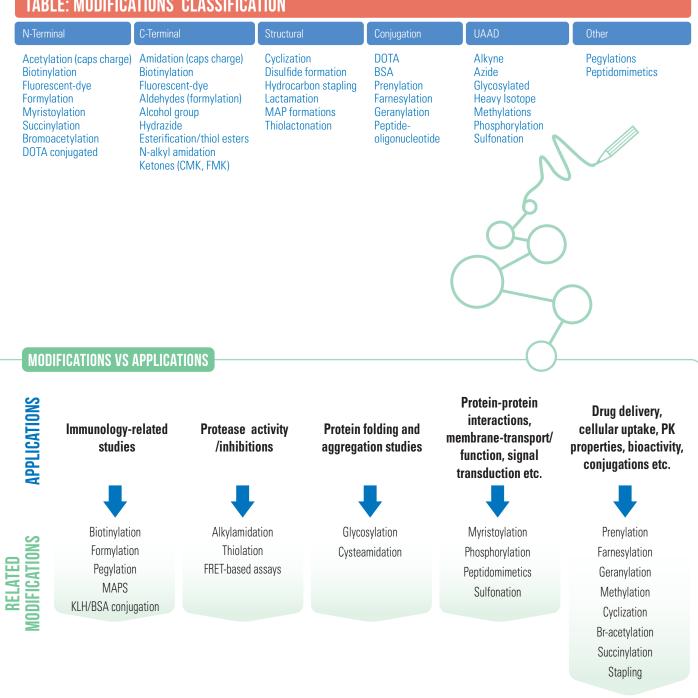
If your peptide is capped, an "Ac" at the N-terminus indicates a CH_2 -CONH acetylation, while "NH₂" at the C-terminus is shorthand for a CONH₂ and indicates an amidation.

Will a charge at the N or C terminus of your peptide interfere with your application or conjugation?

We can "cap" the peptide N-terminus (Acetylation) or C-terminus (Amidation). This process can also help to better mimic the characteristics of a sequence within a protein.

PURITY VS APPLICATIONS Blocking and competition assays Enzyme-substrate studies (quantitative) Western blotting studies Receptor-ligand interaction studies Production of antibodies (non-quantitative) **APPLICATIONS** Enzyme-substrate studies for immunizations (quantitative) Screening purposes ELISA and RIA (quantitative) (non-quantitative) Determination of the titer in vivo/ in vitro studies Phosphorylation studies of antibodies in standard ELISA **High precision quantitative** Affinity purification proteomics (see Quant-Peptides p.10) **PURITY LEVEL** ≥ 90-95% ≥ 80 - 85% ≥ 70% crude

Modifications


Peptide modification feasibility is dependent on the peptide sequence, properties and desired location. Hence, our technical team will review each request case by case.

Modifications can be of the following types:

- > N-terminal
- > C-terminal
- > Structural
- > Conjugation
- > UAAD

TABLE: MODIFICATIONS CLASSIFICATION

Unnatural Amino Acid (UAADs) can be exploited to enhance the stability, or functionality of a therapeutic target, and can be site specifically incorporated into your synthetic custom peptides. Examples include post-translational modifications such as the carboxylation of glutamate (forming the UAA- gamma-carboxy glutamate), and hydroxylation of proline (forming the UAAhydroxyproline).

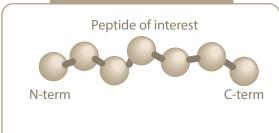
QUANT-PEPTIDES

We exclusively offer 2 proprietary methods that are employed to **measure the net peptide content** of a target peptide in a peptide mixture.

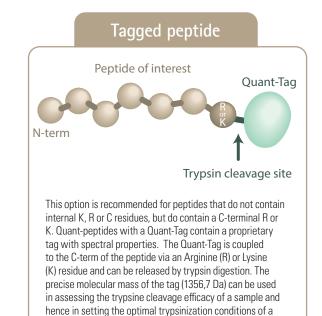
When vial to vial reproducibility or net peptide quantity per vial is required, quant-peptides can be dispensed using our dispensing service. For quant-peptides, we can offer up to 100 aliquots/mg. Our service is performed in a controlled environment to ensure reproducibility and accuracy. (see p. 29)

APPLICATIONS

Quant-Peptides are accurately quantified for use as standards in high precision proteomics, such as in biomarker detection.


BENEFITS

- More accurately quantified than by AAA or CHN analysis
- Precise net peptide quantity in every vial (vial to vial consistency)
- Convenient ready-to-use aliquots


SPECIFICATIONS

Light or heavy-isotope labeled peptides **Purity:** >85 to >95% **Minimum order amount:** 0.5mg

Untagged Peptide

This option applies to peptides containing at least 2 of the following amino acids: F, I, K, L, P, R, V. This Quant-peptide quantification is based on an optimized AAA-MS method. The peptide is hydrolyzed in acidic condition and the AAs is resolved individually (not derivatised) by HPLC-MS.

➡ HEAVY ISOTOPE LABELED PEPTIDES

APPLICATIONS

The use of mass spectrometry (MS) has helped advance proteomic research by providing qualitative information of thousands of known and unknown proteins. By spiking protein tryptic digests with internal heavy isotope labeled peptide standards, MS becomes an absolute quantitation method. These peptides are offered in gross quantities, or quantified using standard CHN analysis or the quant-peptide method.

BENEFITS

Our heavy isotope-labeled custom peptide services offer a choice of heavy hydrogen (²H), carbon (¹³C), or nitrogen (¹⁵N)-isotopes specifically labeled at single, multiple or universal positions. We can increase your peptide mass by several daltons according to your specifications.

SPECIFICATIONS

sample using i.e. MS:MS methods.

Molecular Mass Increase: 1 or more daltons over mass of unlabeled peptide **Purity:** >85 to >95% **Minimum order amount:** 0.5 mg

ALSO AVAILABLE

Peptide Mass Spec Standards AS-60882

This kit consists of two calibration mixtures for calibrating mass scale in MALDI-TOF or ESI mass spectrometry (range from 800 to 3800 daltons).

PEPTIDE-OLIGONUCLEOTIDE CONJUGATES

Peptide-oligonucleotide conjugates (POC) are molecular composites containing a nucleic acid moiety covalently linked to a polypeptide moiety. They serve many important roles as potential therapeutics and owing to their stability, can resist intracellular enzymes present in different cellular compartments.

SPECIFICATIONS

Production quantities	1-20 mg
Typical lead times	5-6 weeks
Peptide length	5-22 amino acids
Oligonucleotide length	10 - 40 bases
Oligonucleotide modifications available	Phosphorothioate linkage Dye labeling (FAM, HEX ,TET, etc) Biotinylation Spacer (C3, HEG, etc)
Peptide modifications available	Acetylation Dye Labeling (FAM, TAMRA)
QC Analysis	Mass Spectrometry

APPLICATIONS

- > Oligo therapeutic target via conjugation to a cell permeable peptide, which acts as a cargo carrier of the oligonucleotide.
- > Peptide conjugations to oligos with modifications designed for varied functionalities/applications.

FLUORESCENT LABELED PEPTIDES

Fluorescent labels

We are pleased to support the scientific community by producing a broad range of premium classical and HiLyte[™] fluorescent dyes for labeling and detection. These dyes are widely used to modify amino acids, peptides, proteins (in particular antibodies), oligonucleotides, nucleic acids, carbohydrates etc, and to detect cellular organelles and molecules. By spanning the whole visible and near infrared spectrum, you are sure to find a dye to suit your specific custom peptide application.

Classical dyes such as FAM, TAMRA and the CyLyte Fluor (Cy® Dyes analogues) are a great cost effective choice when operational pH range of your application is flexible. HiLyte[™] Fluor dyes are not affected by pH, making them an ideal choice when your application requires fluoresent detection at high or low pH (4-11).

Owing to their enhanced intensity and photostability, these dyes also exhibit higher sensitivities. QXL[®] containing FRET substrates can offer fast and easy detection/HTS of protease activity/activators and inhibitors. These substrates are more sensitive than chromogenic substrates with linear dynamic range and great reproducibility.

Our line of QXL[®] quenchers match the most commonly used fluorescent donors and cover the full spectrum. ■

HiLyte™ Fluor 532 HiLyte™ Fluor 555 CyLyte Fluor 3 TAMRA

Rox

Mca AMC

AFC

EDANS

5-FAM

Rh110 HiLyte™ Fluor 488

FITC

BENEFITS

- Span the full visible and near infrared spectrum
- Available in a variety of reactive forms
- Can be paired with our proprietary QXL[®] Quenchers for FRET

GOOD TO KNOW

CyLyte Fluor are cost effective fluorescent dyes. They have the same organic structures as those of Cy[®] Dyes. CyLyte Fluor 3, CyLyte Fluor 5 and CyLyte Fluor 7 are available in two reactive forms (acid & NHS Ester). Cyanines are suitable for molecule labeling such as soluble proteins, antibodies, peptides, oligonucleotides, DNA and small molecules widely used in imaging, immunocytochemistry, flow cytometry and FRET applications.

ORDERING INFORMATION

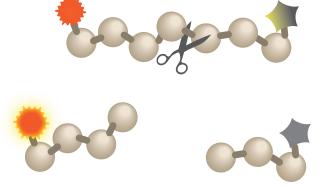
PRODUCT NAME	abs/em (nm)	CAT#					
		Hydrazide	Acid	Succinimidyl ester (NHS)	Amine	C2 Maleimide	Hydroxylamine
HiLyte™ Fluor 488	497/525	AS-81163	AS-81160	AS-81161-1	AS-811621	AS-81164	AS-64348 ²
HiLyte™ Fluor 532	545/565	AS-89343	AS-89340	AS-89341	AS-89344	AS-89342	/
HiLyte [™] Fluor 555	550/566	/	AS-81250	AS-81251	AS-81252	AS-81254-	/
HiLyte [™] Fluor 647	650/675	/	AS-81255	AS-81256	AS-81257	AS-81259	/
HiLyte™ Fluor 750	753/778	AS-81268	/	AS-81266	AS-81267	AS-81269	/
CyLyte Fluor 3	550/564	/	AS-89353	AS-89356	/	/	/
CyLyte Fluor 5	648/663	/	AS-89354	AS-89357	/	/	/
CyLyte Fluor 7	750/773	/	AS-89355	AS-89358	/	/	/
1 TFA calt							

¹ TFA salt

² HCl salt *single isomer*

CyLyte Fluor 7 HiLyte™ Fluor 750

FRET substrates


FRET (fluorescence resonance energy transfer) based assays have found broad applications, one of which is the detection of protease activity. As a world leader in FRET peptide technology we are proud to offer the same variety of long wavelength quencher and dye pairings used in our ID SensoLyte line of Protease activity assay kits. Our FRET pairs can be utilised in drug discovery, enabling extensive detection of protease activity to be faster, easier and compatible with HTS. FRET occurs between a peptide tagged to a donor and an acceptor when placed within 10-100Å of each other resulting in the donor's excitation fluorescence to be quenched by the acceptor. Enzymatic hydrolysis of the peptide results in recovery of the donor fluorescence following spatial separation of the donor and acceptor upon energy transfer. ■

ALSO AVAILABLE

Catalog FRET-peptides

Combining our expertise in peptides and detection reagents synthesis, we are pleased to offer our unique collection of FRET peptides, which includes the following selection.

SELECTION	
Product	CAT #
390 MMP FRET Substrate I Mca - PLGL - Dpa - AR - NH2	AS-27076
390 MMP FRET Substrate II Mca - PLGL - Dpa – AR	AS-27079
520 MMP FRET Substrate IX QXL® 520 - RPLALWRK(5 - FAM) - NH2	AS-60576-01
Bacterial Sortase Substrate I, FRET DABCYL - LPETG - EDANS	AS-62231
Cathepsin D and E FRET Substrate Mca - GKPILFFRLK(Dnp) - r - NH2	AS-61793
Cls Substrate, C2 (5 - FAM/ QXL® 520) 5 - FAM - SLGRKIQIQ - K(QXL® 520) - NH2	AS-61314
HCV (Hepatitis C Virus) NS3/4A Protease Substrate Ac - DE - Dap(QXL° 520) - EE - Abu - ψ - [COO]AS - C(5 - FAMsp) - NH2	AS-60798
HIV Protease FRET Substrate I DABCYL - GABA - Ser - GIn - Asn - Tyr - Pro - Ile - Val - GIn - EDANS	AS-22992
Renin FRET Substrate I DABCYL-GABA-IIe-His-Pro-Phe-His-Leu-Val-IIe-His- Thr-EDANS	AS-24478
For a complete listing visit www.anasp	ec.com

APPLICATIONS

HTS detect protease act protease act and inhibitor

Protease b

protein-pept interaction.

	Peptides with a dye-quencher pair			
	Dye	Ex/Em	Quencher	
	MCA	325/393 nm	Dnp	
	EDANS	335/493 nm	DABCYL, DABCYL Plus™, QXL° 490	
ion of ivity,	FAM	492/518 nm	QXL°520	
ivators s.	FITC	494/519 nm	QXL°520	
ased	HiLyte™ Fluor 488	502/527 nm	QXL°520	
	CyLyte Fluor 3	550/564nm	QXL°570	
d	HiLyte™ Fluor 532	545/565 nm	QXL°570	
	HiLyte™ Fluor 555	550/566 nm	QXL°570	
	TAMRA	541/568 nm	QXL°570	
	Rox	568/591 nm	QXL°610	
	CyLyte Fluor 5	648/663 nm	QXL°670	
	HiLyte™ Fluor 647	650/675 nm	QXL°670	
	CyLyte Fluor 7	750/773 nm	IR-QXL°	

Specifications for FRET peptides

Length: 8-10 amino acids between dye and quencher Location: N/C-terminal and internal labeling Quantity: 1-200mg Purity: 90-95%

Fluorescent Tag

All dyes listed in FRET substrate table can also be used as stand-alone Fluorescent tags.

Specifications

APPLICATIONS

Dye location:

N/C terminal or internal labeling

- O what was fared minut
- Flow cvtometry
- In-vivo imagin
- Used in making tandem conjugates with

Fluorogenic substrates

APPLICATIONS

Fluorogenic substrates do not require a quencher, and contain a C-terminal dye that does not fluoresce until it is cleaved from the peptide (fluorescent form of dye is released).

Peptides with a dye-quencher pair			
Dye	Ex/Em		
AMC	351/430 nm		
AFC	382/480 nm		
Rh110	501/527 nm		

Certificates of Analysis

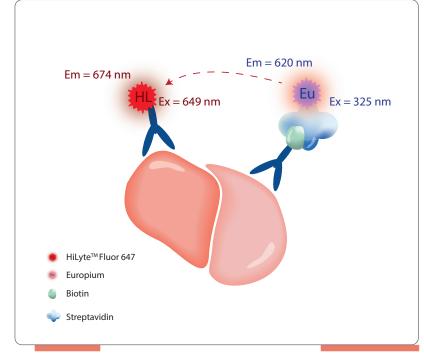
Protein CoA Includes

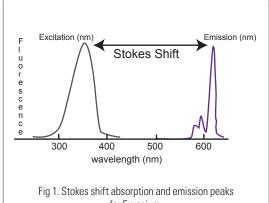
- > Spectral properties
 > DOS: represents the amount of fluorophore
- molecules conjugated to one protein molecule
- Formulation, buffer
 composition
- > Amount and concentration
- Optimal storage
 conditions
- **Peptide CoA Includes**

- > Lyophilized peptide:
- > Mass Spec analysis
- HPLC analysis
 for purity
- >Amount
- > Liquid formulations also include:
- Concentration
- > Spectral properties
- Optimal storage conditions

ALSO AVAILABLE

Additional labels


Aminoluciferin (Bioluminescent Substrate) PNA (Chromogenic Substrate)



TR-FRET

TR-FRET is a combination of Time Resolved Fluorescence (TRF) and Forster's Resonance Energy Transfer (FRET) technologies. This method offers the advantages of reducing background noise and providing a higher sensitivity and reliability than the FRET method. In TR-FRET instead of a fluorescent dye, the donor molecule is a

Lanthanide metal such as Terbium (Tb) and Europium (EU). Their fluorescence is long-lived and is characterised by a large stokes shift providing a high signal-to-noise ratio due to minimal crosstalk between excitation and emission wavelengths.

for Europium. Stokes shift is the difference between the absorption peak and the emission peak for fluorophores. Larger Stokes shift is always preferred which allows the use of broad excitation and emission filters that do not overlap, which in turn increases brightness and sensitivity. Fluorescent probes of smaller Stokes shift require filters that are very close together and do not include the entire area of the curves, thus reducing efficiency and brightness.

BENEFITS

- > Ideal for HTS
- > Large dynamic range
- > High sensitivity
- > Low interference

ASSAY DESIGN & DEVELOPMENT

- > Preparation of substrates labeled with Europium and/or HiLyte™ Fluor 647
- > Validation of assay with inhibitor(s) or biological compounds
- > Detailed step by step assay protocol.

APPLICATIONS

FRET/TR-FRET substrates for
protease activity detection

- screening and discovery Protein-peptide interaction Protein-protein interaction

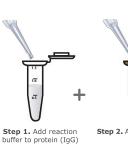
TR-FRET pair			
Donor	Ex/Em	Acceptor	
Europium chelate	325/620 nm	HiLyte™ Fluor 647	
Europium chelate	325/620 nm	CyLyte Fluor 5	

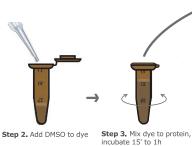
GOOD TO KNOW

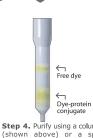
Typically biological samples generate fluorescence (proteins, antibodies, cells or tissues) that can interfere with the assay observations and therefore decrease the assay sensitivity.

TR (time-resolved) based assay technologies eliminate the background by choosing a longer detection interval after excitation, therefore increasing the assay sensitivity.

■ LABELING KITS


AnaTag[™] protein labeling kits


AnaTag[™] kits provide a convenient way to label your proteins, such as those used as reagents in immunofluoresence staining, fluorescence in situ hybridisation, flow cytometry and other biological applications.


The kits use succinimidine ester (NHS ester) conjugates, which react with the amine groups of the target protein to form stable carboxamide bonds. Please note that AnaTaq™ are not convenient to label peptides.

Note: APC, B-PE, and R-PE fluorescent protein kits, make use of an SMCC conjugation method.

Fig 2. Scheme for fluorophore/biotin AnaTag[™] labelng kits.

BENEFITS

> FAST labeling

> All ESSENTIAL

components for

available.

conjugations

> STABLE dye-protein

> CONVENIENT format

conjugation reactions and purification of dye-protein conjugates

Step 4. Purify using a column (shown above) or a spin column (microscale kit) up to 5 mg protein x 3 labelings

ORDERING INFORMATION

		Ca	Catalog #		
Label	Abs/Em (nm)	REACTION SIZE	REACTION SIZE		
		3 x 5 mg	3 x 200 µg		
FLUOROPHORES					
AMCA-X	353/442	AS-72055	AS-72056		
5-FITC	494/519	AS-72059	AS-72060		
HiLyte™ Fluor 488	502/527	AS-72047	AS-72048		
5 TAMRA	547/574	AS-72063	AS-72064		
HiLyte™ Fluor 555	552/569	AS-72045	AS-72046		
HiLyte™ Fluor 647	649/674	AS-72049	AS-72050		
HiLyte™ Fluor 750	754/778	AS-72043	AS-72044		
FLUORESCENT PROTEINS					
APC	650/660	AS-72111 (1x1mg)	n.a.		
B-PE	545/575	AS-72112 (1x1mg)	n.a.		
R-PE	565/575	AS-72113 (1x1mg)	n.a.		
BIOTIN					
Biotin	n.a.	AS-72057 (3x10mg)	AS-72058		
EUROPIUM					
Europium chelate	325/620 nm	n.a.	AS-72246 (1x200 µg)		
Europium chelate & HiLyte™ Fluor 647	Eu: 325/620 nm HL 647: 649/674 nm	n.a.	AS-72247 (HL: 1x200 µg, Eu: 1x 200 µg)		

CyLyte Fluor 5

CyLyte Fluor 7 HiLyte™ Fluor 750

AFC EDANS 5-FAM FITC Rh110 HiLyte™ Fluor 488

Мса

AMC

HiLyte™ Fluor 532 HiLyte™ Fluor 555 CyLyte Fluor 3

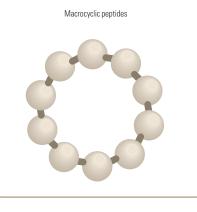
TAMRA

Rox

HiLyte™ Fluor 647

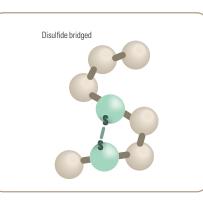
www.anaspec.com

CYCLIC CUSTOM PEPTIDES


AnaSpec offers a versatile platform for synthesis of cyclic and constrained peptides including disulfide bridged peptides, N>C cyclizations, hydrocarbon stapling, and specialised modifications such as lactamations, etc. We also offer a selection of cyclic catalog peptides for your research needs.

BENEFITS

- Enhanced conformational stability
- Mimicking secondary conformations


Specifications for cyclic peptides

Length: 5-11 amino acids Type: Head-to-Tail (N>C) Side Chain to head or tail (N/C) Side Chain to side chain Quantity: 1-200mg Purity: 90-95%

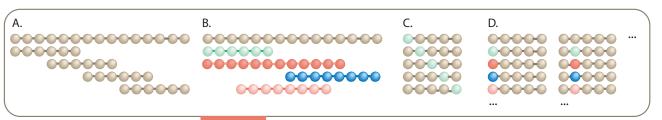
Specifications for disulfide bridging


Length: 1-2 disulfides 3-5 disulfides formed naturally (thermodynamically stable) Quantity: 1-200 mg Purity: 90-95%

Specifications for stapling

Location/turns:

i, i+3, i+4, i+7 etc. Single or double or triple turn stapling positions, as determined by customer **Quantity:** 1-200/300mg **Purity:** 90-95%



POTENTIAL APPLICATIONS

- Stabilization of secondary conformations
- Improved binding affinity to targets
- Modulation/disruption of protein-protein interactions (PPI)
- Modulation/disruption of proteases
- Membrane permeability
- Metabolic stability
- & bioavailability
- Bioactivity
- Serve as structurally engineered models for designing drugs/probing disease mechanisms at target sites
- Generation and screening of libraries of disulfide-based macrocyclic ligands towards target affinities. *Eg.* RGD sequence motifs.

■ PEPTIDE LIBRARIES

Eurogentec offers custom peptide libraries, available with several modifications, in a 96-well plate format for high-throughput screening purpose.

- A. **Overlapping peptide** sequences which are based on a larger protein sequence (peptide length and number of amino acid overlap must be provided).
- B. **Unrelated peptides** of different lengths.
- C. **Alanine scanning** where each amino acid position of the peptide is replaced with alanine.
- D. Degenerated Mix where at position X, a mixture of amino acids is used for coupling (customer specifies amino acids and %). The resulting peptides are mixtures, therefore not purifiable.

BENEFITS

- Superior technical design assistance upon request
- Peptide lengths as long as 22-mers
- Modifications such as fluorescent labeling or biotinylation
- Cost effective

Fig 3 Peptide library type

Specifications

Quantity: 200 - 500 µg of each peptide (up to 10 mg on request) - Minimum 24 peptides

Format: 96-well

Type: Unbound, free crude peptides - Amino N-terminus- $CONH_2$ C-terminus by default (COOH on request for additional fee)

Length: 5-22 amino acids

QC validation: MALDI-TOF QC on 10% of peptides

APPLICATIONS

Epitope mapping

Epitopes recognized by antibodies are commonly 6 amino acids in length. By generating overlapping 15 mer peptides, each shifted by 4 amino acids, one can unequivocally determine which amino acids make up the epitope (fig. 3 A). Eurogentec proposes this service (see Epitope Mapping in the Eurogentec Antibodies brochure).

T-Cell stimulation

Libraries can also be generated to see which particular peptide from an antigenic protein is responsible for a T-cell response. The design process is similar to the epitope mapping example above.

Alanine scanning

By screening peptides with systematic replacement of each amino acid with alanine, one can determine to which extent a particular amino acid is required and sufficient for an interaction or an activity (fig 3 C).

Amino Acid optimization

By systematically replacing every amino acid position in a peptide with each possible amino acid, one can optimize the activity of a particular peptide sequence (fig 3 D).

- Protein-protein and protein-peptide interaction studie
- Kinase motif discovery
- Protease motif discovery
- Biological Assays

AnaSpec Catalog peptides

Can't find a peptide? Request a Quote.

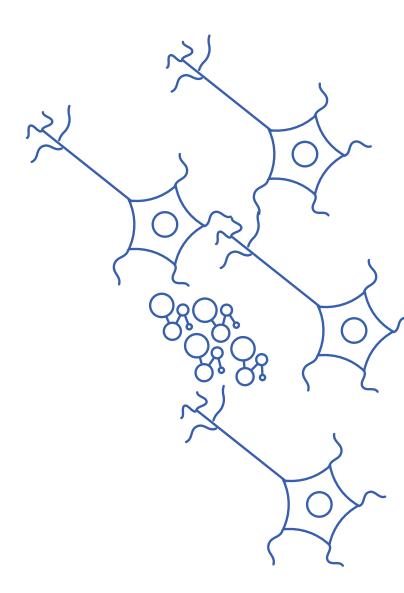
PEPTIDE GROUPS BY RESEARCH TOPIC

Cell permeable & Cell penetrating

Epigenetics

Peptide hormones

Peptide analysis


₽ NEUROSCIENCE

disease.

The role of peptides in the pathological states of brain tissue in the context of neurodegenerative diseases has sparked enormous interest in research and development, particularly with beta-amyloid peptides and Alzheimer's

We are proud to feature the largest group of beta-amyloid peptides along with other peptides involved in neuroscience diseases such as Multiple Sclerosis, Parkinson's Disease, etc. Our neuroscience peptides also include opioïds and neuropeptides. Readily available to order, these peptides have been used by a large number of scientists and drug developers.

SELECTION OF PEPTIDES

PRODUCT & SEQUENCE	CAT. #
Beta-Amyloid (1-42) DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA	AS-20276
Beta-Amyloid (1-42), HiLyte™ Fluor 488-labeled HiLyte™ Fluor 488-DAEFRHDSGYEVHHQK LVFFAEDVGSNKGAIIGLMVGGVVIA	AS-60479-01
beta-Amyloid (1-42), HiLyte™ Fluor647-labeled HiLyte™ Fluor 647-DAEFRHDSGYEVHHQKLVFFAEDV GSNKGAIIGLMVGGVVIA	AS-64161
Beta-Amyloid (1-42), HiLyte™ Fluor 555-labeled HiLyte Fluor™ 555-DAEFRHDSGYEVHHQKLVFFAEDVGSNK GAIIGLMVGGVVIA	AS-60480-01
Beta-Amyloid (1-42) • HFIP DAEFRHDSGYEVHHOKLVFFAEDVGSNKGAIIGLMVGGVVIA	AS-64129-1
Biotin-beta-Amyloid (1-42) Biotin-DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA	AS-23524-01
Beta-Amyloid (1-40) DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV	AS-24236
Beta-Amyloid (1-40)-Lys(Biotin-LC) DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV-K(Biotin-LC)	AS-23517
Cys-beta-Amyloid (1-40) CDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV	AS-23520
Beta-Amyloid (1-40), HiLyte [™] Fluor 488-labeled HiLyte [™] Fluor 488-DAEFRHDSGYEVHHQKLVFFAED VGSNKGAIIGLMVGGVV	AS-60491-01
Beta-Amyloid (1-40), HiLyte™ Fluor 555-labeled HiLyte™ Fluor 555-DAEFRHDSGYEVHHQKLVFFAEDVGSNK GAIIGLMVGGVV	AS-60492-01
Beta-Amyloid (1-40)-Lys(Biotin)-NH, DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV-K(Biotin)- NH ₂	AS-61483-05
Beta-Amyloid (25-35) GSNKGAIIGLM	AS-24228
MOG (35-55), mouse, rat MEVGWYRSPFSRVVHLYRNGK	AS-60130-1
PLP (139-151) HCLGKWLGHPDKF	AS-63912
(Leu5)-Enkephalin YGGFL	AS-24333
Dynorphin A (1-17) YGGFLRRIRPKLKWDNQ	AS-24297
Galanin, human GWTLNSAGYLLGPHAVGNHRSFSDKNGLTS	AS-22431
Substance P RPKPQQFFGLM-NH ₂	AS-24279
Neuropeptide Y, human, rat YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY-NH ₂	AS-22464

For a complete listing visit WWW.anaspec.com

CARDIOVASCULAR

The cardiovascular system, comprising of and regulated by a complex network of molecules, also includes unique peptide systems involved in the regulation of processes governing cardiac health. These peptides are

known to play important roles specifically involving the two major pathways, the coagulation and the renin-angiotensin pathways that govern the cardiovascular system. Owing to certain structural motifs and properties, some of the peptides function as agonists while others function as antagonists. For example, some of the protease-activated receptors modulators act as agonists in mediating cellular effects of thrombin while others function as antagonists, thereby participating in the overall regulation of thrombosis and hemostasis.

AnaSpec is proud to feature multiple cardiovascular-related peptides readily available to order.

SELECTION OF PEPTIDES

PRODUCT & SEQUENCE	CAT. #
Atrial Natriuretic Peptide (1-28), rat Sequence: SLRRSSCFGGRIDRIGAQSGLGCNSFRY (Disulfide bridge: 7-23)	AS-20652
B-type Natriuretic peptide (BNP-45), mouse SQGSTLRVQQRPQNSKVTHISSCFGHKIDRIGSVSRLGCNALKLL (Disulfide bridge:23-39)	AS-61152
Endothelin 3, human, rat, mouse, rabbit CTCFTYKDKECVYYCHLDIIW (Disulfide bridge: 1-15 and 3-11)	AS-24323
Angiotensin II, human DRVYIHPF	AS-20634
Protease-Activated Receptor-1, PAR-1 Agonist TFLLRN	AS-61530
Protease-Activated Receptor-4, PAR-4 Agonist 3, amide, murine $\mathrm{GYPGKF}\text{-}\mathrm{NH}_2$	AS-60778
ADAMTS-13 FRET Substrate, FRETS-VWF73 DRE-Dap(Nma)-APNLVYMVTG-Dap(Dnp)-PASDEIKRLPGDIQVVPIGVGP NANVQELERIGWPNAPILIQDFETLPREAPDLVLQR	AS-63728-05
Thrombospondin (TSP-1) Inhibitor, LSKL $\mbox{LSKL-NH}_{\rm 2}$	AS-60877
Thrombin Receptor Activator for Peptide 6 (TRAP-6) SFLLRN	AS-24190
Thrombin Substrate S2238 f-Pip-R-pNA	AS-63776
Angiotensin I Converting Enzyme 2 (ACE-2) Inhibitor, DX 600 Ac-GDYSHCSPLRYYPWWKCTYPDPEGGG-NH ₂	AS-62337
Renin 390 FRET Substrate I R-E(EDANS)-IHPFHLVIHT-K(DABCYL)-R	AS-62022
[Pyr1]-Apelin-13 Pyr-RPRLSHKGPMPF-0H	AS-60833
Bradykinin Antagonist, HOE I40 rRP-(Hyp)-G-(Thi)-S-(D-Tic)-(Oic)-R	AS-22968
Fibrinogen Binding Inhibitor Peptide HHLGGAKQAGDV	AS-60700
Spexin (36-49), human/mouse/rat NWTPQAMLYLKGAQ-NH ₂	AS-65569
Spexin-2 (53-70), human/mouse/rat FISDQSRRKDLSDRPLPE	AS-65586

For a complete listing visit www.anaspec.com

DIABETES

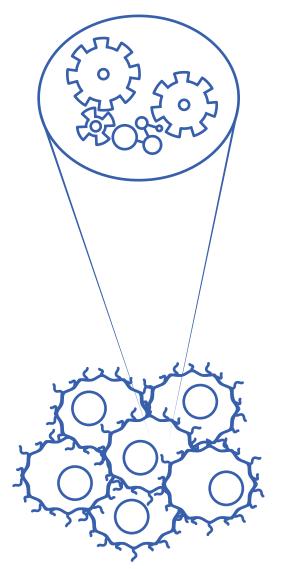
Diabetes, a metabolic disease with increasing numbers of prevalence, has attracted much research attention in identifying key regulatory molecules geared towards its prevention and management. Peptides that are

secreted in response to glucose stimulus and known to act on insulin-sensitive tissues have become important therapeutic targets for effecting insulin sensitiveness. Some of the key peptides involved in the regulation of glucose metabolism include C-peptide, Glucagon-like peptides and Exendins.

We are proud to feature a group of peptides specific to diabetes that are readily available to order. The diabetes group of peptides offered elicit important roles in glucose metabolism/modulation via insulin and noninsulin signaling pathways with therapeutic potentials.

SELECTION OF PEPTIDES

PRODUCT & SEQUENCE	CAT. #
Amylin (1-37), Islet Amyloid Polypeptide, IAPP, human KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY (Disulfide bridge: 2-7)	AS-60804
Amylin (1-37), Islet Amyloid Polypeptide, IAPP, human, amide KCNTATCATORLANFLVHSSNNFGAILSSTNVGSNTY-NH2 (Disulfide bridge: 2-7)	AS-60254-1
Amylin (1-37), human, amide, Biotin-labeled Biotin-KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY-NH2 (disulfide bridge: 2-7)	AS-64451-05
BDC2.5 Mimotope RTRPLWVRME	AS-63774
Insulin B (9-23) SHLVEALYLVCGERG	AS-61532
Exendin (9-39) DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2	AS-24468
Exendin 4 HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2	AS-24464
Glucagon-Like Peptide 1, GLP-1 (9-36), amide, human, mouse, rat, bovine, guinea pig EGTFTSDVSSYLEGOAAKEFIAWLVKGR-NH2	AS-65070
C-peptide (57-87), human EAEDLQVGQVELGGGPGAGSLQPLALEGSLQ	AS-61127
GIP (3-42), human EGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ	AS-61227
GIP (1-42), human YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ	AS-61226-1
Somatostatin 28, human, sheep, cow, rat, mouse, pig SANSNPAMAPRERKAGCKNFFWKTFTSC (Disulfide bridge: 17-28)	AS-22901
Glucagon (1-29), bovine, human, rat, porcine HSQGTFTSDYSKYLDSRRAQDFVQWLMNT	AS-22457
Pancreatic Polypeptide, human APLEPVYPGDNATPEQMAQYAADLRRYINMLTRPRY-NH ₂	AS-22866


For a complete listing visit www.anaspec.com

■ CANCER AND APOPTOSIS

Peptides have been used as tools to study apoptosis, and also as important regulators of this process as seen in cancer and related diseases. Synthetic peptides that can target the apoptotic signal transduction cascades and/or function as pro-apoptotic

agents bearing pharmaceutical potential are being developed. Cancer cells exhibit an elevated apoptotic threshold and peptides that are able to induce apoptosis in tumor cells are increasingly seen as promising candidates for the development of new

effective anticancer therapeutics.

Here we offer a list of peptides that target oncogenic/angiogenic and apoptotic pathways/mechanisms. This group includes important sets of apoptotic peptides such as the caspases, which by virtue of their apoptotic nature play important roles in cancer. As other catalog peptides, these peptides are readily available to order, and continue to attract attention among cancer research scientists worldwide.

SELECTION OF PEPTIDES

PRODUCT & SEQUENCE	CAT. #
Kisspeptin-10 (Kp-10), Metastin (45-54), human YNWNSFGLRF-NH ₂	AS-64240
AH1 Sequence (6-14) murine leukemia virus MuLV SPSYVYHQF	AS-64798
Caspase 1 (ICE) Inhibitor II, biotinylated Biotin-YVAD-CMK	AS-60841
Caspase 3 (Apopain) Substrate 1m, fluorogenic Ac-DEVD-AMC	AS-25262-5
Caspase 8 Substrate 1, chromogenic Ac-IETD-pNA	AS-25258-5
Caspase 9 Substrate 1, chromogenic Ac-LEHD-pNA	AS-25278-5
gp100 (209-217) IMDQVPFSV	AS-61277
c-Myc peptide epitope EOKLISEEDL	AS-24194
TRP-2, Tyrosinase-related Protein 2 (180-188) SVYDFFVWL	AS-61058
NY-ESO-1 (87-111) LLEFYLAMPFATPMEAELARRSLAQ	AS-62655
Bid BH3 (80-99) EDIIRNIARHLAQVGDSMDR	AS-61711
Bid BH3 (80-99), FAM labeled 5-FAM-EDIIRNIARHLAQVGDSMDR	AS-61712
p53 (17-26), FITC labeled FITC-LC-ETFSDLWKLL-NH _z	AS-62386
BAD (103-127), human NLWAAQRYGRELRRMSDEFVDSFKK	AS-60984
Bim BH3, Peptide IV DMRPEIWIAOELRRIGDEFNAYYARR	AS-62279
Human PD-L1 inhibitor I FNWDYSWKSERLKEAYDL	AS-65581
Human PD-L1 inhibitor II FNWDYSLEELREKAKYK	AS-65582
Human PD-L1 inhibitor III TEKDYRHGNIRMKLAYDL	AS-65583
Human PD-L1 inhibitor IV GNWDYNSQRAQLYNQ	AS-65584
Human PD-L1 inhibitor V LDYVNRRKMYQ	AS-65585

For a complete listing visit www.anaspec.com

EXAMPLE SION AND ECM

The group of peptides presented here are related to the extracellular matrix and regulation of adhesion. This group includes cyclic peptides that target the integrin receptors and modulate integrin function via cell communication and signal transduction, matrix metalloprotease substrates, etc. As other catalog peptides, these peptides are readily available to order, and continue to attract wide applications for these cell adhesion peptides.

SELECTION OF PEPTIDES		
PRODUCT & SEQUENCE	CAT. #	
520 MMP FRET Substrate III QXL™ 520-PLGC(Me)HAr-K(5-FAM)-NH ₂	AS-60570-01	
520 MMP FRET Substrate XV QXL™ 520 -γ-Abu-PQGL-Dab(5-FAM)-AK-NH ₂	AS-60582-01	
520 MMP FRET Substrate XIV ΩXI™ 520 -γ-Abu-P-Cha-Abu-Smc-HA-Dab(5-FAM)-AK-NH2 (Smc=S-Methyl-L-cysteine)	AS-60581-01	
Cyclo (-RGDfC), avb3 Integrin Binding Cyclic RGD Peptide Cyclo(-RGDfC)	AS-63785-1	
Integrin Binding Peptide Ac-GCGYGRGDSPG-NH2	AS-62349	
Vitronectin (367-378) GKKQRFRHRNRKG	AS-65335	

Hyaluronan Inhibitor GAHWQFNALTVR	AS-62622
ADAMTS-4/Aggrecanase FRET Substrate, WAAG-3R Abz-TEGEARGSVI-Dap(Dnp)-KK-NH ₂	AS-60431-1
Cyclo (-RGDfK) Cyclo(-RGDfK)	AS-61111
Cyclo (-RGDyK) Cyclo(-RGDyK)	AS-61183-5
RGD-4C ACDCRGDCFCG (Disulfide bridge: 2-10 and 4-8)	AS-29898
GRGDSP GRGDSP	AS-22946
Cyclo-[GRGESP] Cyclo-[GRGESP]	AS-64447
For a complete listing visit	

For a complete listing visit WWW.anaspec.com

➡ CELL PERMEABLE AND CELL PENETRATING

Discover our specialized group of peptides related to cell permeation and cellular components. This group features peptides such as TAT, receptor targeting peptides, Arginine repeats, nuclear and mitochondrial membrane transporters, etc. TAT penetrates

plasma membranes directly, not through endocytosis. (Arg)9 is a cell-permeable peptide used for drug delivery which can traverse the plasma membrane of eukaryotic cells. The Antennapedia homeodomain protein of drosophila can penetrate biological

membranes, and the derived peptide (residues 43-58) retains this translocation property.

SELECTION OF PEPTIDES		
PRODUCT & SEQUENCE	CAT. #	
TAT (47-57) YGRKKRRQRRR	AS-60023-5	
Cys(Npys)-TAT (47-57), FAM-labeled C(Npys)YGRKKRRQRRR-K(FAM)-NH ₂	AS-61213	
Tat-C (48-57) CGRKKRRQRRR	AS-62063	
TAT-HA2 Fusion Peptide RRRQRRKKRGGDIMGEWGNEIFGAIAGFLG	AS-64876	
(Arg)9 RRRRRRRR	AS-61204	
(Arg)9, FAM-labeled FAM-RRRRRRRR	AS-61207	
Cys(Npys)-{D-Arg}9 C(Npys)rrrrrr-NH ₂	AS-61206	

SV-40 T antigen peptide is used to translocate DNA molecules to the cell nucleus. Pep-1 is an amphipathic synthetic cellpenetrating peptide which has been successfully used to deliver a variety of proteins and other biopharmaceutical macromolecules into cells in a non-disruptive way. Buforin interacts with phospholipid bilayers and can be efficiently translocated across the layer with a weak membrane permeabilization activity. Cys(Npys) versions allow easy conjugation to the cargo molecules to be internalized.

These peptides are readily available to order, and continue to attract attention among scientists in drug discovery and research worldwide.

Antennapedia Peptide, acid RQIKIWFQNRRMKWKK	AS-61032
Cys(Npys) Antennapedia Peptide, amide C(Npys)-RQIKIWFQNRRMKWKK-NH ₂	AS-61034
SV40 T-Ag-derived Nuclear Localization Signal (NLS) Peptide PKKKRKVEDPYC	AS-63788
Pep-1-Cysteamine Ac-KETWWETWWTEWSQPKKKRKV-cysteamine	AS-63849
Buforin TRSSRAGLQFPVGRVHRLLRK	AS-61255
Chimeric Rabies Virus Glycoprotein Fragment (RVG-9R) YTIWMPENPRPGTPCDIFTNSRGKRASNGGGGRRRRRRRR	AS-62565
Penetratin RQIKIWFQNRRMKWKKGG	AS-64885
For a complete listing visit	

For a complete listing visit www.anaspec.com

HOST DEFENSE

This category presents a unique group of peptides including microbial peptides, antimicrobials, immune-, and inflammationmediated peptides categorized exclusively as a 'host defense' catalog group of peptides. Readily available to order, the group features

SELECTION OF PEPTIDES	
PRODUCT & SEQUENCE	CAT. #
LL-37, Antimicrobial Peptide, human LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES	AS-61302
OVA (257-264) SIINFEKL	AS-60193-1
OVA (323-339) ISQAVHAAHAEINEAGR	AS-27024
Influenza HA (307-319) PKYVKQNTLKLAT	AS-61028
CEF20, Cytomegalovirus, CMV pp65 (495-503) NLVPMVATV	AS-28328
IL-8 Inhibitor Ac-RRWWCR-NH2	AS-62401
Magainin 2 GIGKFLHSAKKFGKAFVGEIMNS	AS-20640
mCRAMP, mouse GLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPEQ	AS-61305

a unique combination of bacterial and viral peptides, antimicrobials like cathelicidins, immune-modulatory MHC-II and Ova peptides, and inflammation mediating cytokines involved in the study of several pathogen-mediated host defense mechanisms and studies involving characterization of immune/inflammatory processes in disease events.

C5a Receptor Agonist, mouse, human FKP-(D-Cha)-Cha-r	AS-65121
Protegrine-1 (PG-1), amide RGGRLCYCRRRFCVCVGR-NH $_{\rm 2}~$ (disulfide bridge:6-15 and 8-13)	AS-64819-1
Indolicidin ILPWKWPWWPWRR-NH ₂	AS-60999
flg22, Flagellin Fragment QRLSTGSRINSAKDDAAGLQIA	AS-62633
Defensin HNP-1, Human Neutrophil Peptide-1 ACYCRIPACIAGERRYGTCIYQGRLWAFCC (Disulfide bridge: 2-30, 4-19, 9-29)	AS-60743
hBD-3, beta-Defensin-3, human GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK (Disulfide bridge: 11-40, 18-33, 23-41)	AS-60741
Gag Spacer Peptide P1 HHHHHIIKIIK	AS-64773
HIV Substrate, HiLyte Fluor™ 488 0XL™520-GABA-SQNYPIVQ-K(HiLyte Fluor™ 488)-NH ₂	AS-60635
For a complete listing visit	

www.anaspec.com

EPIGENETICS

Our exclusive gene expression related histone peptides offer a wide selection to choose from. This special group includes important histone peptides and their covalent modifications on the amino terminal end such as methylation, acetylation and phosphorylation as key structural players in chromatin assembly and gene expression. As with our other catalog peptides, these peptides are readily available to order.

SELECTION OF PEPTIDES	
PRODUCT & SEQUENCE	CAT. #
Histone H3 (1-21) ARTKQTARKSTGGKAPRKQLA	AS-61701
Histone H3 (1-21)-GGK(Biotin)-NH ₂ ARTKQTARKSTGGKAPRKQLA-GGK(Biotin)-NH ₂	AS-61702
[Lys(Me1)4]-Histone H3 (1-21)-GGK(Biotin) ART-K(Me1)-QTARKSTGGKAPRKQLA-GGK(Biotin)	AS-64355-1
[Lys(Me2)4]-Histone H3 (1-21), H3K4(Me2) ART-K(Me2)-QTARKSTGGKAPRKQLA	AS-63677
[Lys(Ac)9]-Histone H3 (1-21), H3K9(Ac) ARTKQTAR-K(Ac)-STGGKAPRKQLA	AS-64191
[Lys(Ac)9]-Histone H3 (1-21)-GGK(Biotin) ARTKQTAR-K(Ac)-STGGKAPRKQLA-GGK(Biotin)	AS-64361-1
Histone H3 (21-44) ATKAARKSAPATGGVKKPHRYRPG	AS-64454-1

Histone H3 (21-44)-GK(Biotin)	AS-64440-1
ATKAARKSAPATGGVKKPHRYRPG-GK(Biotin)	
[Lys(Me3)27]-Histone H3 (21-44)-GK(Biotin) ATKAAR-K(Me3)-SAPATGGVKKPHRYRPG-GK(Biotin)	AS-64367-1
Histone H4 (1-21), p300/CBP Substrate SGRGKGGKGLGKGGAKRHRKV	AS-62499
Histone H4 (1-21)-GGK(Biotin) Ac-SGRGKGGKGLGKGGAKRHRKV-GGK(Biotin)	AS-62555
[Lys(Ac)5/8/12/16]-Histone H4 (1-21)-GGK(Biotin) SGRG-K(Ac)-GG-K(Ac)-GLG-K(Ac)-GGA-K(Ac)-RHRKV-GGK(Biotin)	AS-64989-1
Histone H4 (1-25)-GSGSK(Biotin) SGRGKGGKGLGKGGAKRHRKVLRDN-GSGSK(Biotin)	AS-65242-1
For a complete listing visi www.anaspec.com	t

PEPTIDE HORMONES

We offer a comprehensive list of important peptide hormones that are active at a physiological level and target specific organs and systems. The catalog group of peptide hormones includes hormones acting on the hypothalamus-pituitary axis, endocrine system, gastrointestinal tract etc. These highly popular peptides related to physiology are readily available to order, and have supported both basic and applied research.

ORDERING INFORMATION		
PRODUCT & SEQUENCE	CAT. #	
PACAP (1-27), amide, human, ovine, rat HSDGIFTDSYSRYRKQMAVKKYLAAVL-NH ₂	AS-22527	
Oxytocin CYIQNCPLG-NH ₂ (Disulfide bridge: 1-6)	AS-24276	
Peptide YY, human YPIKPEAPGEDASPEELNRYYASLRHYLNLVTRQRY-NH ₂	AS-24401	
Cholecystokinin (26-33), CCK Octapeptide, sulfated CCK-8 D-Y(SO3H)-MGWMDF-NH $_{\rm 2}$	AS-20741	

[Des-octanoyl]-Ghrelin, human GSSFLSPEHORVOORKESKKPPAKLOPR	AS-61177
ACTH (1-39), human SYSMEHFRWGKPVGKKRRPVKVYPNGAEDESAEAFPLEF	AS-20611
Leptin (93-105), human NVIQISNDLENLR	AS-62853
Gastrin-1, human Pyr-GPWLEEEEAYGWMDF-NH ₂	AS-20750
For a complete listing visit	

www.anaspec.com

This catalog peptide category comprises a comprehensive listing of signaling peptides under an exclusive catalog grouping. This group includes a vast array of kinase substrate libraries, kinase/phosphatase substrates, ion channel modulators etc, unique to several signaling pathways and signal transduction mechanisms involved in normal physiology and disease. These peptides are readily available to order, and continue to attract wide applications.

ORDERING INFORMATION			
PRODUCT & SEQUENCE	CAT. #		
Kinase Substrates Library, Group I, biotinylated, 180 distinct peptide mixtures	AS-62017-1		
Kinase Substrates Library, Group II, biotinylated, 18 distinct peptide mixtures	AS-62335		
CDK7/9 tide YSPTSPSYSPTSPSYSPTSPSKKKK	AS-63367		
Kemptide [LRRASLG] LRRASLG	AS-22594		
Myristolated PKC Zeta, Pseudosubstrate (ZIP) Myr-SIYRRGARRWRKL	AS-63361		
Autocamtide-2-Related Inhibitory Peptide (AIP); CaMKII Inhibitor, myristoylated Myr-KKALRRQEAVDAL	AS-64929		
Casein Kinase 2 (CK2) Substrate alpha-subunit [RRRDDDSDDD] RRRDDDSDDD	AS-60615		
Srctide [GEEPLYWSFPAKKK-NH2] GEEPLYWSFPAKKK-NH2	AS-64105		

CK1 Peptide Substrate (pS7) [KRRRAL-pS-VASLPGL] KRRRAL-pS-VASLPGL	AS-63797
Protein Kinase Cepsilon Peptide Substrate [ERMRPRKRQGSVRRRV] ERMRPRKRQGSVRRRV	AS-27183
AMARA peptide AMARAASAAALARRR	AS-62596
Tyrosine Kinase Peptide 3 [RRLIEDAE-pY-AARG], Phosphorylated RRLIEDAE-pY-AARG	AS-24546
Insulin Receptor (1142-1153), pTyr(1146, 1150, 1151) TRDI-pY-ETD-pY-pY-RK	AS-20272
Caloxin 1b1 TAWSEVLHLLSRGGG	AS-64236
Iberiotoxin (IbTX) Pyr-FTDVDCSVSKECWSVCKDLFGVDRGKCMGKKCRCYQ(Disulfide bridge: C7-C28,C13-C33,C17-C35)	AS-60763

or a complete listing visit WWW.anaspec.com

PEPTIDE ANALYSIS

Our peptides for analysis purposes include mass spectroscopy standards, epitope tags, phosphopeptide standards, and dipeptide libraries. The peptide MS standards consists of 2 MS calibration mixtures (800 to 3800 Da); the phosphopeptide MS

standard is a mix of 6 phosphorylated peptides. The dipeptide library is composed of dipeptides to be chosen

among a selection for your application. These peptides are grouped under 'peptide analysis' for ease of selection and ordering. They are also readily available to order.

ORDERING INFORMATION

PRODUCT & SEQUENCE	CAT. #
HA Tag YPYDVPDYA	AS-21156
3 x Hemagglutinin (HA) Tag MEYPYDVPDYAAEYPYDVPDYAAEYPYDVPDYAAKLE	AS-63764
DYKDDDDK Tag DYKDDDDK	AS-60738
His Tag ННННН	AS-24420
Glu-Glu epitope Tag EYMPME	AS-62189
Rhodopsin Epitope Tag TETSQVAPA	AS-62190
V5 Epitope Tag GKPIPNPLLGLDST	AS-61176
[Glu1]-Fibrinopeptide B MS standard EGVNDNEEGFFSAR	AS-60501-1
Peptide Mass Spec Standards	AS-60882
Phosphopeptide Mass Spec Standards	AS-61145
ClearPoint [™] BSA (347-359), Isotopic labeled, Mass Spec Standard DAF-L*-GSF-L*-YEYSR [L* = L(U13C6, 15N)]	AS-61220
Bovine &-Casein, monophosphopeptide standard for MS and IC FQ-pS-EEQQQTEDELQDK	AS-61146
Dipeptide Library	AS-65126-336

For a complete listing visit www.anaspec.com

ANNEXES TECHNICAL INFO AND FAQs

Is there a length limitation for custom peptides?

Typical lengths are 2 to 60 amino acids long. Longer peptides are possible, but they are sequence dependent and must be assessed carefully.

What type of counter-ion should I request?

Default is TFA (Trifluoroacetic acid), but if working with cells or animals, you may prefer an acetate or HCI salt counter-ion (for additional fee).

How do I calculate molarity of my catalog or custom peptide?

Molarity refers to the molar concentration of a solution, which is the number of moles of solute dissolved in 1 liter of solution, expressed as mol/L, or M. Molarity [M] = Mass / (Volume x Molar Mass); Mole = Concentration (g/L) x Volume (L)/MW (g/mol)

Example:

Given: 1mg of dry peptide powder with MW: 20KDa (Molar mass of peptide is 20 g/mol) To determine molarity with known mass and known volume For a 1ml solution of this peptide: Molarity = Mass (0.001g) / (volume (0.001L) x Molar Mass (MW 20,000) = 50 \mu M

To determine mass to achieve a certain molarity: If for your assay, you need 0.01mM working peptide solution in 1ml of water, then calculate mass required as follows: Mass = Molarity x Volume x Molar Mass Mass = 0.01mM x (1/1000 L) x 20,000g/mol = 0.0002g Hence, you will need 0.2mg/ml of peptide to have a working solution of 0.01mM.

How should I store my peptide?

For long-term storage of peptides, lyophilization is highly recommended. Lyophilized peptides can be stored for years at temperatures of -20 °C or lower with little or no degradation. Peptides in solution are much less stable. Peptides are susceptible to degradation by bacteria so they should be dissolved in sterile, purified water. As moisture will greatly reduce the long term stability of peptides, peptides should be allowed to equilibrate to room temperature in a dessicator before dispensing, thus avoiding exposure to moisture in the air which will condense on the peptide. Once dispensed, the tube should be gently purged with anhydrous nitrogen or argon, the container recapped, sealed with parafilm and stored at -20 °C.

In solution, some slow degradation reactions may take place, the rate of which will be sequence dependent:

- Peptides containing methionine, cysteine, or tryptophan residues can have limited storage time in solution due to oxidation. These peptides should be dissolved in oxygen-free solvents.
- Glutamine and asparagine can deamidate to Glu and Asp, respectively
- Cysteines can undergo oxidative cyclization to form Cys-Cys
- Charged residues (Asp, Glu, Lys, Arg, His) are hygroscopic (take up water + moisture)

To prevent the damage caused by repeated freezing and thawing of peptides, dissolving the amount needed for the immediate experiment and storage of the remaining peptide in solid form is recommended.

How do I solubilize my peptide?

Peptide solubility characteristics vary strongly from one peptide to another. Residues such as Ala, Cys, Ile, Leu, Met, Phe, and Val will increase the chance of the peptide having solubility problems.

The best solvent to use will depend on the solubility properties of the peptide and solvent requirements of your assay. We recommend predicting the physical properties of the peptide, dissolving the peptide as a function of these physical properties and then adapting the solubility results experimentally.

In order to reconstitute the peptide, distilled water or a buffer solution should be utilized. Some peptides have low solubility in water and must be dissolved in other solvents such as 10% acetic acid for positively charged peptides or 10% ammonium bicarbonate solution for negatively charged peptides. Other solvents that can be used for dissolving peptides are acetonitrile, DMSO, DMF, or isopropanol. Use the minimal amount of these non-aqueous solvents and add water or buffer to make up the desired volume. Always use pure solvent first, then dilute by adding water stepwise until you reach a solvent concentration compatible with your assay. After peptides are reconstituted, they should be used as soon as possible to avoid degradation in solution. Unused peptide should be aliquoted into single-use portions, relyophilized if possible, and stored at -20 °C. Repeated thawing and refreezing should be avoided.

For peptides that tend to aggregate (usually peptides containing cysteines), add 6 M urea, 6 M urea with 20 % acetic acid, or 6 M guanidine - HCl to the peptide, then proceed with the necessary dilutions. Please note that urea irreversibly alters the side chain of lysines. If this is to be avoided, use of guanidium chloride is advised. A major problem associated with the dissolution of a peptide is secondary structure formation. This formation is likely to occur with all but the shortest of peptides and is even more pronounced in peptides containing multiple hydrophobic amino acid residues. Secondary structure formation can be promoted by salts.

ADDITIONAL SERVICE

To avoid freeze-thaw cycles and increase your peptide's life-time we can deliver your peptides into aliquoted vials containing ready-to-use accurate quantity.

Our dispensing service guarantees a high vial to vial reproducibility and considerably reduces set-up time and peptide waste that may occur with manual pipeting. The dispensing service is in line with ISO15189 requirements and each production is performed under controlled environment to avoid contamination risks.

DISPENSING

The dispensing service is in line with ISO15189 quality standards. Any size of routine assays to full kitting solutions can be produced with a very high reliability, reproducibility and accuracy. This process saves set-up time and reduces reagent wastage, while keeping format flexibility.

TRADEMARKS AND LABELS

HiLyte[™] is a trademark of AnaSpec, Inc. QXL[®] is a registered trademark of AnaSpec, Inc. Cy[®] is a registered trademark of GE Healthcare.

HOW TO ORDER

WWW.ANASPEC.COM

CUSTOM PEPTIDES

Step 1: Request a Quote by sending the fol- lowing information.	a.	Provide the peptide sequence using the single letter amino acid code N-termXXXXXXXXXC-term Upper case letters denote L-form amino acids Lower case letters denote D-form amino acids
	b.	Indicate modifications and location in sequence
	c.	Specify N-terminus: free amine, capped, or other C-terminus: free carboxyl, capped, or other
	d.	Required Purity >95%, >90%, >85%, >80%, >70%, or crude
	e.	Quantity (mg to grams) specify if amount is gross or net.
	f.	Indicate number of vials and peptide quantity per vial (default is one vial)
	g.	Tell us the required counter-ion. Trifluoroacetic acid (TFA) Acetate salt HCl salt
	h.	Send us your quote request via email or online.
Step 2: Review your Quote		Upon receipt of quote (+/- 24 hours), review the sequence a nd specifications for accuracy. Contact us if a revision is needed.
Step 3: Order your peptide		Send us your order along with the quotation number.

ONLINE

CATALOG PEPTIDES

To order catalog peptides, go online or contact us directly by email. Can't find a peptide or need bulk quantities? Request a peptide quotation.

ORDER

- Europe email: order@eurogentec.com
 - online: www.eurogentec.com

BULK QUOTE

email: peptidequotation@eurogentec.com

ORDER

email: orders@anaspec.com online: www.anaspec.com

BULK QUOTE

email: quotes@anaspec.com

QUOTE REQUEST

online: http://www.eurogentec.com/ custom-peptide-order-form.html email: peptidequotation@eurogentec.com

ORDER

order@eurogentec.com

TECHNICAL ASSISTANCE

info@eurogentec.com

e	QUOTE REQUEST
& Asia	online: http://www.anaspec.com/services/ peptide.asp
Canada	email: quotes@anaspec.com ORDER
_	email: orders@anaspec.com
US,	TECHNICAL ASSISTANCE
	email: chemistry@anaspec.com

US, Canada & Asia

RELATED PRODUCTS

BE AWARE OF ANASPEC LICENSE STATEMENTS September 2019

- Antibodies
- Custom monoclonals >
- Custom polyclonals >
- Catalog antibodies >

- Protein iDentification
- iD SensoLyte® assay kits >
- Recombiant proteins >

Hilyte™ Fluor Dyes

 Use of this product is covered by one or more of the following US patents owned by AnaSpec, Inc.: USP 7,465,810, USP 7,754,893, USP 7,820,783, USP 8,258,292, and divisionals, continuations, continuations-in-part, reissues, substitutes, and extensions thereof. The purchase of this product conveys to the buyer a limited, non-exclusive, nontransferable right (without the right to sell, repackage, or further sublicense) under these patent rights to use only the amount of product purchased for the purchaser's own internal research. No other license is granted to the buyer whether expressly, by implication, by estoppel or otherwise. In particular, the purchase of this product does not include nor carry any right or license to use, develop, or otherwise exploit this product commercially, and no rights are conveyed to the buyer to use the product or components of the product for any other purposes, including without limitation, provision of services to a third party, generation of commercial databases, or clinical diagnostics or therapeutics. This product is for research use only. For information on purchasing a license to this product for purposes other than research, contact licensing@ eurogentec.com.

QXL[®] Quenchers

Use of this product is covered by one or more of the following US patents owned by AnaSpec, Inc.: USP 7,910,753, USP 8,093,411, and divisionals, continuations, continuations-in-part, reissues, substitutes, and extensions thereof. The purchase of this product

conveys to the buyer a limited, non-exclusive, nontransferable right (without the right to sell, repackage, or further sublicense) under these patent rights to use only the amount of product purchased for the purchaser's own internal research. No other license is granted to the buyer whether expressly, by implication, by estoppel or otherwise. In particular, the purchase of this product does not include nor carry any right or license to use, develop, or otherwise exploit this product commercially, and no rights are conveyed to the buyer to use the product or components of the product for any other purposes, including without limitation, provision of services to a third party, generation of commercial databases, or clinical diagnostics or therapeutics. This product is for research use only. For information on purchasing a license to this product for purposes other than research, contact licensing@ eurogentec.com

SensoLyte® assays and assay kits

 Use of this product is covered by European Patent 1243658, US Patents 7.033.778 and 7.256.013 and their foreign counterparts, and licensed by CycLex Co. Ltd.

FRETS-VWF73 and any kits containing FRETS-VWF73

 Use of this product is covered by US Patent 7,718,763 and by Japan Patent 3.944.586, and licensed by the National Cerebral and Cardiovascular Center.

www.anaspec.com

Peptides

Contact: For more information, please contact your Sales representative or contact us at: chemistry@anaspec.com

> AnaSpec, Inc. 34801 Campus Drive Fremont, CA 94555 - USA

> > Eurogentec 2019 Follow us on

LS-BRO-PEPTIDES-US-1219-V7